
1 

VORTICITY TRANSPORT: THE TRANSFER OF VISCOUS STRESS 
TO REYNOLDS STRESS IN TURBULENT CHANNEL FLOW 

Garry Brown 

Department of Mechanical and Aerospace Engineering 

Princeton University 

Princeton, NJ 08544 

glb1873@msn.com 

Myoungkyu Lee and Robert Moser  

Department of Aerospace Engineering and Engineering Mechanics 

The University of Texas at Austin 

Austin, TX 78712 

rmoser@ices.utexas.edu 

1. Introduction
It is 100 years since Taylor (1915) first drew attention 

to the connection between the transport of vorticity and 

the Reynolds stress.  In a plane, wall-bound shear flow 

such as Channel flow it is simply1 

  z y

d
u v v w

dy
               (1)                   

The Reynolds stress is zero at the wall and so it is the 

gradient in Reynolds stress that transfers the viscous stress 

to a Reynolds stress. From Eq. 1 it is inextricably linked to 

the transport of vorticity near the wall.   In his extension 

of the vorticity transport theory to three dimensions, 

Taylor (1932) developed the correlations through a 

Lagrangian equation for vortex elements but, after having 

obtained an expression, commented “In general it is so 

complicated that it is of little practical use, but in certain 

special cases considerable simplifications may occur”. His 

comment, in addition to the difficulties with experimental 

measurement, may explain why so little is known about 

these two transport terms in plane turbulent shear flows. 

Experiments identified many characteristic features of 

near wall flows, however, including for example, the early 

identification of ‘streaks’ of low forward momentum near 

the wall and a ‘burst-sweep cycle’ found by Kline, 

Reynolds and Schraub (1967) and various other 

‘characteristic’ structural features as in Wallace, 

Eckelmann and Brodkey (1972), Blackwelder and 

1 In summation notation the vector identity 
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 and since in incompressible 

fluid the mean and the fluctuation velocity vectors are both 

solenoidal then  2
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k ijk j k
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u u
u u

x x
 

  
   

 
.   For 

streamwise independent turbulent shear flows Eq. 1 then follows 

for i  in the x direction (with the usual notation for Cartesian 

velocity and vorticity components and averages taken over time 

or over sufficiently large areas of  x - z planes). 

Eckelmann (1979), Smith and Metzler (1983) and many 

others.  A broad overview is provided by Wallace (2012). 

Coles (1978), for example, proposed a model for how the 

Reynolds stress arises from ‘streamwise vortices’ but at 

the time had no way of actually testing the ideas or of 

completing his ‘cartoon’, as he described it.  The role of 

streamwise vortices became well-accepted.  Nevertheless, 

experiments did not provide a detailed understanding of 

the vorticity transport very near the wall and therefore of 

the transfer mechanism from a viscous stress to a 

Reynolds stress.   

High Reynolds number DNS calculations have no such 

limitations and transport quantities such as those in 

Equation (1) can be readily obtained.  The early DNS 

study by Robinson (1991) identified ‘coherent motions’ in 

the turbulent boundary layer. Numerical experiments 

permit ‘non-physical’ experiments, which allow candidate 

Reynolds-stress-mechanism hypotheses to be tested, as in 

the results of Jimenez and Pinelli (1999).   Jimenez and 

Moin (1991) considered the minimal Channel flow 

dimensions to sustain turbulent motion and, later, Schoppa 

and Hussein (1997, 2002) and Jimenez and Pinelli (1999) 

looked closely at the mechanisms which sustain near wall 

turbulence. Lee and Kim (2002) focused on the viscous 

sublayer in their study of drag reduction.  In the following 

we revisit the very near wall transfer of viscous stress to 

Reynolds stress from Taylor’s transport of vorticity 

perspective.  

2. Vorticity Transport in Channel flow

    For turbulent Channel flow, where the pressure gradient 

is equal to the gradient in y  of the total stress, Eq. (1)

leads to     

 1
d p

d dUw
u v

dx dy dy




   

0, 2

d d
z z

v wz y
dy dy

y h

 

          



 
 
 
 

     (2) 
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since  
0,2

0
z y y h

v w 


      (i.e. at both walls) and 

z

dU

dy
   .  Thus, the total mean vorticity flux, 

z
z y

d
v w

dy


       , is constant across every plane 

parallel to the wall.  

  

 

   The Reynolds stress is zero at the wall and on the 

centerline, so it necessarily has a maximum at some 

m
y y .  That is, 

                 0
my y

d
u v

dy 
                         (3)                             

This implies from Eqs.(2) and (3) that at this location, 

m
y y , as at the wall, all the vorticity flux is carried by 

viscous diffusion because the contribution from the 

turbulent motion is zero, i.e. 

                     0z y

my y
v w 


                             (4)          

and                   

0,2

z z

my h y y

d d

dy dy

 
 

 

 
   

   
   

 

Since 
z

  is far from zero at 
m

y y  and 
z

  is not at a 

local maximum but is increasing (becoming less negative) 

with increasing y , zv   can be expected to be negative 

at 
m

y y  (as expected from Taylor’s (1915) analysis, for 

example).  Correspondingly, but somewhat surprisingly, 

since there is no mean 
y

  (or W), we anticipate that 

y
w 

 
is also negative at 

m
y y  since it is equal to 

zv  . Interestingly, for 
m

y y  since   0
d

u v
dy

    

it could then be expected (from Eq. (1)) that in this region, 

y
w   would be larger in magnitude than zv  , whereas 

for 
m

y y , where   0
d

u v
dy

    then zv   would 

be larger in magnitude than 
y

w  !                                     

These simple conclusions are supported by the values 

of these fluxes determined from DNS calculations for 

Channel flow (Moser et al ( 1999), Del Alamo et al 

(2004), Lee and Moser (2015)).  For the particular case of 

1000R

  the DNS results are shown in Fig.1, (a) and 

(b). They show the large negative value of 
y

w 
 
near the 

wall, the value of 
m

y


 of approximately 50 for this 

particular R


, and the change in relative magnitude of the 

two fluxes above and below 
m

y .  The largest negative 

value of 
y

w 
 

, is -0.066, occuring at approximately 

10y

  (half of this peak value occurs at only 5y


 , 

approximately).   

 
(a) 

 
(b) 

 
(c) 

Fig. 1  The two vorticity flux components of 

 
d

u v
dy

   from Eq.1, 
y

w 
 
and 

z
v   vs. y


 (a) out 

to 200y

  and (b) out to 1000y


  (c) The 

correlation coefficient for the two vorticity flux 

components out to 1000y

 . 

 

Fig. 1(c) shows the profile of the corresponding 

correlation coefficient for the two fluxes (the r.m.s.  

values of w  and 
y

  at the same y  are used to non-

dimensionalize the correlation).  Note the large coefficient 



3 

 

( 0.37 ) very near the wall at 5y

  for 

y
w  and the 

relatively very small coefficient for both fluxes far from 

the wall, particularly for 
y

w  .2    

The underlying turbulent structure responsible for the 

fluxes, is very different for 
m

y y  from the structure 

much further from the wall 
m

y y . In particular, since 

both 
z

d

dy


  and zv   are negative then from Eq. (2), 

zv 
 acts as a transport of mean vorticity in the same 

direction as the viscous diffusion, whereas 
y

w   acts to 

transport the mean vorticity in the opposite direction from 

viscous diffusion! 3  

The effect of the two fluxes and their respective 

magnitudes near the wall and far from the wall provide 

insight into a ‘counter-gradient’ transport of mean 

vorticity that occurs near the wall.  That is, it explains why 

the mean vorticity near the wall is large but the net flux of 

mean vorticity perpendicular to the wall remains small 

and it is the central reason why the mean span-wise 

vorticity at the wall increases (i.e. the mean vorticity is 

redistributed back towards the wall in the absence of a 

mean free-stream pressure gradient) during transition in 

the boundary layer from laminar to turbulent flow (while 

farther from the wall the vorticity diffuses more rapidly 

away from the wall with a corresponding increase in 

boundary layer thickness). 

 

Note, in passing that, if the Law of the Wall is assumed, 

 U u f y



 , then since 

2 2

2

1

mm

w z

y yy y

d p u d d U

dx h dy d y




 




    
   
   

  
(5)                      

 
1

m
f y

R


                                 (6) 

Assuming, tentatively, that the Log Law, 

   1 lnU f y y C
  
   , is crudely 

                                            
2  Note also the large positive coefficient ( 0.33 ) at only 

2.5y


  for zv    (i.e. very close to the wall the flux of 

spanwise vorticity is positive (back towards the wall).  As 

discussed below this too has the same origin as the high 

correlation for 
y

w  .)   

3 An alternative description in terms of the ‘vortex force’, 

u  , is that the vortex force zv   points downstream (so 

that a negative value points upstream and acts to slow the fluid 

down (oppose the pressure gradient force)) while yw   points 

upstream and a negative value points downstream and it requires 

a large gradient in viscous stress to balance the sum of this 
component of the vortex force and the pressure force which both 

act in the same direction. 

 

representative of the mean velocity profile at 
m

y


 then  

 
2

1
m

m

f y
y




    so that 

 
m

R
y






     and    

1
m

y

h R



                (7)                                                                                 

 

Thus, assuming the Law of the Wall applies in the 

region where 
m

y y , it is interesting that the location of 

m
y


 does not become independent of Reynolds number 

(the ratio of the outer and inner scales).4  From the further 

assumption of a Log Law in this region then, for a fixed 

pressure gradient (constant u


for a given h ), as 0  , 

m
y


 increases as 
1 2




 while 0
m

y h   as 
1 2

 .   

The simple prediction from Eq. (7) can be compared 

with the numerical results at R

 180,

 
550, 1000 and 

5186 for which the calculation gives 
m

y

 31.7, 44.2, 

53.4 and 104.6, respectively, and for which Eq. (7)  gives 

21.6, 37.8, 51.0 and 116.2 assuming    .384 (Lee and 

Moser (2015)).  Only at  R

  5186 do the numerical 

results show a significant region of the velocity profile (

y

 300) which is accurately logarithmic.  The accuracy 

of these simple estimates of 
m

y


 is therefore limited but 

the trend with R


is well captured. 

 

3. The probability density function for 
y

w 
 

. 

      Fig. 2(a) shows the probability density function for 

y
w 

 
,  i.e. ( )

y
P w 

 
, at  5y


  for three different 

Reynolds numbers.  Fig. 2(b) shows a ‘Cumulative 

Integral’, defined as ( )
y

w

P d


  
 


 ), which illustrates 

the contribution of the large negative values of 
y

w 
 

 to 

the mean value. Several important points can be made.  

The similarity of the pdf for  
y

w 
 

 at three different 

values of R


(including the very low value of 180) is 

remarkable.  This supports an underlying basis for a 

common mechanics and, correspondingly, the Law of the 

Wall very close to the wall.  The pdf has a peak value at 

zero and a pronounced asymmetry.  Since the mean value 

at 1000R

  is -0.041 (the value of the Cumulative 

Integral as 
y

w w
+ +

® - ¥ ) it is remarkable that the 

                                            

4 This dependence of 
m

y  on R
t

 for channel flow also leads, as expected, to 

( )
m w

u v y τr ¢ ¢- ®  as R

 .   

 



4 

 

Cumulative Integral does not reach 90% of this 

asymptotic value (i.e -.037) until 1.0
y

w w
+ +

< - , 

approximately,  which is nearly 25 times larger than the 

mean value!   

 

 
(a) 

 

 
(b) 

 

Fig. 2 (a) The Probability Density Function, i.e. 

( )
y

P w 
 

 at 5y

  and  (b) A ‘Cumulative 

Integral’ from the pdf of 
y

w 
 

 at 5y

  

The distribution is very far from Gaussian!  It seems that 

the mean is determined by negative (and weaker positive) 

‘events’ which not infrequently are relatively very large 

compared with the mean and that in each event the 

negative value substantially exceeds the positive.    

This statistical result demands a physical explanation.  

  

     The mechanics can be readily inferred from 

detailed views of the velocity field and vorticity field on 

y z  planes through regions of large negative values of 

y
w 

 
 ( 1.0

y
w 

 
  ) on this plane.  Both from 

individual realizations and from statistical correlations the 

mechanics results from the central role played by 

streamwise vorticity.  Local concentrations of streamwise 

vorticity give rise to a compatible velocity field  

(qualitatively arising from a local application of the Biot 

Savart relation as if the flow were 2D) which lifts up and 

pushes down spanwise vorticity, which by the tilting 

mechanism gives rise to wall normal vorticity. This then 

correlates with the spanwise component of velocity ( w ) 

which also arises from the streamwise vorticity (hence the 

high correlation and correlation coefficient).  The 

asymmetry in the correlation (larger negative values than 

positive) arises because the lift up away from the wall is 

larger than the push down towards the wall (due to the 

image vorticity for zero velocity at the wall) and for the 

same sign of w  the value of 
y

w  is therefore larger on 

the side of 
x

  which lifts spanwise vorticity away from 

the wall.  An example of a characteristic ‘event‘ is shown 

in Fig 3. It shows the streamwise vorticity, the velocity 

vectors in the plane, the spanwise velocity, the wall 

normal vorticity and contours of 
y

w .  The role of the 

streamwise vorticity in producing the large correlation at 

5y

  is plain.     

 
 

 
 

 
 

 
 

 
 

Fig. 3. From top to bottom are contours at a given 

time on a y-z plane, 500 wall units wide by 100 high of (a) 

streamwise vorticity (b) the velocity vectors on the plane 

(c) spanwise velocity (d)  wall normal vorticity (e) 
y

w 
 

. 

The line  5y

  on the plane is marked. 

 

The plot of the wall normal vorticity shows how 

vortex lines are wrapped around the structure and 

contribute wall normal vorticity as well as streamwise 

vorticity and, of course, spanwise vorticity.  The resulting 

structure is therefore oblique to both the wall and to the 

streamwise direction.  Fig 4 shows the structure made 
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evident by a contour plot of 
2

  (Hussein and Jeong 

1997). 

 

 
 

Fig 4 An isometric view of the vortical structure with 

vortex lines passing through 10y

 , 900z  . 

 

The origin of this streamwise vorticity is not yet 

certain (one can, however, see a nascent ‘offspring’ in Fig 

4) but once initiated with sufficient amplitude there is a 

process of ‘self-amplification’.  The circulation in a y-z 

plane tends to increase with downstream distance through 

the helical wrapping of vortex lines. Additional stream-

wise vorticity increases this circulation, which will tend to 

wrap more lines etc. The structure lifts away from the wall 

because of the addition of wall normal vorticity.    The 

‘Streak Transient Growth’ mechanism described by 

Schoppa and Hussein (2002) appears to be this process.   

 

 The footprint of the structures that give rise to large 

values of 
y

w 
 

 near the wall can be seen from the 

diffusion of the square of the streamwise vorticty at the 

wall, as shown in Fig 5.  One can see the oblique angle 

with respect to the streamwise direction, the relatively 

sparsely spaced large events, and also the occurence of 

events that appear to be spatially related in some way to 

neighboring events.  

 

 
 

Fig 5 Contour plot at the wall of the ‘viscous 

transport’ 
2

0

1

2
x

y

y 


 
   
     

 at a given time, 

500 1500x


  ,. 500 1500z


  , R

  180 

 

 

 

 

 

 

4. Summary and some Concluding Remarks  

The DNS results over a range of Reynolds numbers 

for turbulent channel flow have provided a unique 

opportunity to consider the vorticity flux terms that 

account for the gradient in Reynolds stress.  Taylor (1915 

and 1932) drew attention to these vorticity flux terms.  In 

1915 he provided a 2-D model for the correlation 
z

v 

and his attempt in 1932 to include the other term led him 

to comment subsequently on the ‘intractability of the 

equations’ and the need for further assumptions with a 

view to simplification.  Of course these fluxes near the 

wall could not be measured.  Simple arguments in this 

paper show that it is yw   that is the dominant term near 

the wall.  The DNS results provide, for the first time, 

details of these vorticity fluxes over a range of Reynolds 

numbers.  Close to the wall the transfer from a viscous 

stress at the wall to a Reynolds stress results from the 

gradient in Reynolds stress and therefore the behavior 

near the wall of 
y

w 
 

.  It has a maximum value at 

10y

 , and even at 5y


 , the correlation is 

substantial; it is found to have statistical characteristics 

which reflect a contribution from ‘large events’.  For 

example, at 1000R

  and 5y


 the mean value is 

.041, but approximately 10% of the contribution to the 

mean value comes from negative values of the correlation 

that are more than 25 times larger than the mean value.   

The focus has been on the vorticity field and the 

mechanism that accounts for the vorticity transport (flux) 

close to the wall.  The essential role of streamwise 

vorticity, its origin and development have been discussed.   

 

As has been recognized, once the transfer of viscous 

stress to Reynolds stress is understood, ways to affect it, 

as in the case of the Thom’s effect (the reduction in shear 

stress at moderate Reynolds number with the addition of a 

relatively small concentration of polymer) or re-

laminarization through a pressure gradient or other future 

strategies, can be anticipated.    

 

The same mechanisms are expected near the wall for other 

wall-bound turbulent shear flows.   

At high Reynolds number, for example, is there some 

‘cancellation’, far from the wall, of the effects of positive 

and negative streamwise vortical structures but a 

remaining 
z

  component from the ‘heads’ of the near 

wall structures?  This component is only cancelled from 

sources on the opposite wall for channel flow (and not 

cancelled in the boundary layer). Is it connected with the 

dominance of the zv   flux far from the wall and the 

emergence in a boundary layer of a large scale structure?       
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