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ABSTRACT
A Lagrangian study on the evolution of vortical struc-

tures in the Klebanoff-type temporal transitional channel
flow is reported. Based on the Eulerian velocity field
from the direct numerical simulation, a backward-particle-
tracking method is applied to solve the transport equation
of the Lagrangian scalar field. and then the iso-surfaces of
the Lagrangian field can be extracted as Lagrangian materi-
al surfaces in the evolution. It is noted that the Lagrangian
surface, which is initially a vortex surface, is demonstrated
as a good approximation of a vortex surface before signif-
icant topological changes. Thus the Lagrangian structures
can be used to represent the evolution of vortical structures
in the early transition. The evolution of a typical Lagrangian
surface is presented. The near-wall Lagrangian surface can
evolve from a streamwise-spanwise sheet to a triangular
bulge, and then into the signature hairpin-like structure.By
comparing the Lagrangian results with the vortical struc-
tures identified by Eulerian vortex identification criteria, d-
ifferences between Lagrangian and Eulerian structures are
discussed. In particular, the Lagrangian approach can eluci-
date the continuous temporal evolution of vortical structures
in transitional wall flows.

INTRODUCTION
The laminar-turbulent transition has been one of the

most fundamental and challenging problems in turbulence
research for decades. The K-type transition is often used as
a typical case to study transitional flows. Previous studies
about the K-type transition provide an overview of the de-
veloping process of the transitional flow, and the formation

and evolution of vortical structures play an important role
(see Lee & Wu, 2008).

In the vortical structures, the ‘hairpin vortex’, first pro-
posed by Theodorsen (1952), is considered as the key struc-
ture in turbulent wall flows that is closely related to the
bursting process in the buffer layer. This kind of struc-
tures were visualized by smoke in the experiment by Head
& Bandyopadhyay (1981), which demonstrates that turbu-
lent boundary layer appears to consist very largely of hair-
pin vortices and related structures. Based on the concept
of the hairpin vortex and the attached-eddy hypothesis of
Townsend (1976), Perry & Chong (1982) proposed a model
for wall turbulence, connecting the turbulent statistics with
the randomly scattered hairpin vortices. This model was
then extended in the work of Perryet al. (1986) and Perry
& Marusic (1995).

Although some models of wall turbulence based on
the concept of hairpin vortices or quasi-streamwise vortices
have been developed, our understanding of hairpin vortices
are still not complete. Robinson (1991) claimed that hair-
pins with a pair of counter-rotating quasi-steamwise vor-
tices play some role in the dynamics of wall-bounded turbu-
lent flows, but the details are still controversial. The recent
development of numerical simulation and high-resolution
particle image velocimetry (PIV) technique provides more
information about hairpin vortices and related structuresin
wall turbulence. Zhouet al. (1999) discussed the mechanis-
m of the evolution of a single hairpin vortex-like structure
into coherent packets of hairpin vortices in a low-Reynolds-
number channel flow. Combining PIV experiments and di-
rect numerical simulations, Adrian (2007) thoroughly re-
viewed the dynamics of hairpin vortex and hairpin packets,
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and pointed out that turbulent statistics such as turbulen-
t kinetic energy and Reynolds stress are highly correlated
with hairpin-related structures. Based on the increasing un-
derstanding of coherent structures in wall-bounded turbu-
lence, Marusicet al. (2010) proposed a wall model which
can predict near-wall velocity profile relying on large-scale
motions in the outer layer. These studies about hairpin vor-
tices, however, are mainly based on the vortical structures
identified from Eulerian velocity fields at a time instant, so
there is still a lack of a description for the dynamic, contin-
uous temporal evolution of vortical structures.

For studying the vortical structures in wall turbulence,
the vortex identification methods are of importantce, and
they can be roughly divided into two categories. One
is based on Eulerian criteria, and the other is from the
Lagrangian perspective. Since the Eulerian identification
methods are based on instantaneous velocity fields, in prin-
ciple, the information of dynamic evolution of the vortex
structures at different times is missing. On the other hand,
the Lagrangian vortex identification methods appear to be
more natural to describe the evolution of vortical structures
than the Eulerian methods. In experiments, visualization
techniques such as smoke, dye and hydrogen bubbles are
typical Lagrangian-type methods. However, these meth-
ods face difficulties of diffusion or following property of
the tracers, and they can hardly be used for quantitative
analysis (see Robinson, 1991). In numerical simulation-
s, a few of Lagrangian-type vortex identification methods
were proposed. Haller (2001) used the direct Lyapunov ex-
ponent to define ‘Lagrangian coherent structures’ in three-
dimensional flow. This method was applied to study the
evolution of a single hairpin vortex and coherent structures
in fully developed wall turbulence (Greenet al., 2007).

Based on tracking of Lagrangian material surface, the
Lagrangian scalar field and related multi-scale geometric
analysis have been successfully applied in isotropic turbu-
lence (Yanget al., 2010), simple transitional flows such as
Taylor-Green and Kida-Pelz flows (Yang & Pullin, 2010),
and fully developed channel flows (Yang & Pullin, 2011b).
This method can present the temporal evolution of La-
grangian surfaces with quantitative multi-scale and multi-
directional statistical geometry. In the present study, this
method is extended to the laminar-turbulent transition prob-
lem. By investigating the dynamic evolution of Lagrangian
structures in transitional channel flow, we provide a La-
grangian perspective to elucidate the dynamics in the for-
mation and evolution of the typical vortical structures.

METHODS
Direct numerical simulation of temporal tran-
sitional channel flow

A diagram of the computation domain of channel flow
is shown in figure 1. The sides of the domain in the stream-
wise x-, the spanwisey- and the wall-normalz- directions
areLx, Ly andLz, respectively. The three-dimensional in-
compressible Navier-Stokes equations for the velocityuuu =
(u,v,w) are non-dimensionalized by the channel half-height
δ and the bulk velocityUb as

∂uuu
∂ t

+uuu ···∇∇∇uuu =−∇p+ fff +
1

Reb
∇2uuu,

∇∇∇ ···uuu = 0,



 (1)

Figure 1. Diagram of the computational domain.

where p is the pressure,ν is the kinetic viscosity,
Reb = Ubδ/ν denotes the Reynolds number withUb =∫ 2δ
0 udz/Lz. The channel half-height is set asδ = 1, and

the flow is driven by a time-dependent external forcefff (t)
to maintain a constant flow flux withUb ≈ 1 in the stream-
wise direction.

For the direct numerical simulation (DNS), (1) is
solved by the Fourier–Chebyshev pseudo-spectral method
(Kim et al., 1987). The no-slip conditions are applied at
the walls atz = 0 andz = 2δ , and the periodic boundary
conditions are applied in the streamwise and spanwise di-
rections. The nonlinear term is dealiased using the two-
thirds truncation method (Canutoet al., 1988). The low-
storage third-order semi-implicit Runge-Kutta method (S-
palartet al., 1991) is applied for the temporal discretization.
The number of gridsNx, Ny andNz in all the directions and
other parameters of the simulations are listed in table 1. The
wall-friction Reynolds numberReτ = uτ δ/ν in this table is
calculated after the flow reaches the fully developed turbu-
lent state, whereuτ =

√
τw/ρ is the wall friction velocity

with wall shear stressτw.

Table 1. Summary of DNS parameters.

Reτ Lx Ly Lz Nx Ny Nz

207.8 5.61 2.99 2 192 192 192

The initial condition is set as the basic Poiseuille flow
with three Tollmien–Schlichting (TS) waves to trigger the
K-type transition. The initial disturbances (see Sandham
& Kleiser, 1992; Schlatteret al., 2004) consist of a two-
dimensional TS wave with an amplitude ofA1 = 3.5% and a
pair of superimposed oblique three-dimensional waves with
amplitudes ofA2 = 0.09%, which are similar to the simula-
tions in Gilbert & Kleiser (1990). The numerical solver and
initial disturbances used in this DNS were verified in Zhao
et al. (2014).

The flow gradually evolves from the laminar state into
the fully developed turbulent state with the imposed initial
disturbances. The temporal evolution of the wall-friction
Reynolds numberReτ is shown in figure 2. The transi-
tion in this simulation can be roughly divided into three
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Figure 2. Temporal evolution of the wall-Reynolds
numberReτ in the K-type temporal transition in a channel
flow. The initial and ending tracking times are marked by
red circles.

stages. First, the initial disturbances gradually amplifyat
t < 80, with the integral flow quantities such asReτ remain
at the laminar values. After the slow amplification of the
disturbances, the integral quantities change significantly in
a short period, which implies the onset of the transition at
80≤ t ≤ 108. The flow structures undergo significant topo-
logical changes aroundt = 108, and then the flow develops
into the fully turbulent state. The evolution of flow struc-
tures in the early transitional stage for 80≤ t ≤ 108 will be
studied in detail.

Backward-particle-tracking method for the
Lagrangian field

The equation for the Lagrangian scalar fieldφ(xxx, t) in
incompressible flow reads

∂φ
∂ t

+uuu ···∇∇∇φ = 0, (2)

and iso-surfaces of the scalar field are Lagrangian material
surfaces in the temporal evolution. A set of ordinary differ-
ential equations (ODEs) are converted from (2) to calculate
trajectories of fluid particles as

∂XXX(xxx0, t0 | t)
∂ t

=VVV (xxx0, t0 | t) = uuu(XXX(xxx0, t0 | t), t), (3)

whereXXX(xxx0, t0 | t) is the location at timet of the particle
which was located atxxx0 at the initial timet0 andVVV (xxx0, t0 | t)
is the particle velocity at timet. A backward-particle-
tracking method is implemented to solve (3). More detail-
s about this numerical scheme should be referred to Yang
et al. (2010) and Yang & Pullin (2011b).

The initial Lagrangian field is set asφ0 = z, and the
iso-surfaces ofφ(xxx0, t0) are streamwise-spanwise planes at
different wall distances in figure 1. It is noted that the La-
grangian field stays invariant for this particularφ0 in the
perfect laminar Poiseuille flow, while imposed initial dis-
turbances, can break the invariance and cause the evolution
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Figure 3. Temporal evolution of〈λω 〉, whereλω is the
cosine of the angle betweenωωω and ∇∇∇φ . The dashed line
shows the 5% level.

of the scalar field. The initial tracing timet0 = 80 is se-
lected when the amplitudes of the initial disturbances are
small enough, so that every initial material surface can be
approximated as a vortex sheet that is composed of vortex
lines.

The evolution and dynamics of Lagrangian structures
can be studied from the evolution of Lagrangian material
surfaces in the early transitional stage for 80≤ t ≤ 108.
The Lagrangian surface extracted as the iso-surface of the
Lagrangian field with contour levelφ+

0 = 45 are select-
ed to study the evolution of Lagrangian hairpin structures.
Here,φ+

0 = φ0/δν is the scaled initial scalar value att = t0.
Hence, the surface ofφ+

0 = 45 is from the log-law region.
With the initial fieldφ0 = z, the scalar value on the surface
remains a constant from the mapping

φ+(xxx, t) = φ+(XXX(xxx0, t0 | t), t)←→ φ+(xxx0, t0)←→ z+0 . (4)

Approximation of vortex surfaces
As remarked in Yang & Pullin (2010), the Lagrangian

surface can be considered as a good approximation for
the vortex surface before significant topological changes in
high-Reynolds-number flows. The vortex surface is a sur-
face composed of vortex lines, which implies that the local
vorticity vector is tangent at every point on the surface. S-
ince the flow at the initial timet0 is a laminar Poiseuille
flow with small disturbances, and the vorticity then mainly
has the spanwisey-component, the initial Lagrangian sur-
faceφ0 = z0 can be taken as a good approximation of the
vortex surface, which is sketched in figure 1.

The cosineλω of the angle between the vorticity and
the Lagrangian scalar gradient can be used to quantify the
approximation of a Lagrangian surface to a vortex surface
(see Yanget al., 2010; Yang & Pullin, 2011a). Here,λω is
defined as

λω ≡
ωωω ···nnn
|ωωω | . (5)

If ωωω is perpendicular tonnn in the whole field, the Lagrangian
surfaces completely coincide with the vortex surfaces with
〈λω 〉= 0, where〈·〉 denotes the volume average.
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Temporal evolution of〈λω 〉 obtained from the present
transitional channel flow is shown in figure 3. For strictly
inviscid incompressible flow with conservative body forces,
the Helmholtz vorticity theorem shows that Lagrangian sur-
faces which are vortex surfaces at timet = 0 remain so for
t > 0. Thus〈λω 〉= 0 can be satisfied fort > 0 with 〈λω 〉= 0
at t = 0 in inviscid flow. In a viscous flow, as shown in
figure 3,〈λω 〉 slowly increases because of the viscous ef-
fect and the breakdown of the Helmholtz theorem. How-
ever, 〈λω〉 remains less than the 10% level fort < 108 in
the present transitional flow. Therefore, we can reasonably
assume that vortex surfaces are still well approximated by
the Lagrangian surfaces at the early stage of transition be-
fore significant topological changes of vortical structures.
In order to ensure the good approximation of vortex sur-
faces using Lagrangian surfaces, the results in the present
study are restricted on the evolution for 80≤ t ≤ 108 with
〈λω 〉 ≤ 10%.

RESULTS: ANALYSIS OF LAGRANGIAN
HAIRPIN STRUCTURES

In this section, the evolution and dynamics of the La-
grangian hairpin-like structures is investigated using the
Lagrangian surfaceφ+

0 = 45, which can evolve from a
streamwise-spanwise sheet to a triangular bulge, and then
into the signature hairpin-like structure. The iso-surfaces
of the Eulerian vortex identification criteria is also used for
comparison.

Stage 1, triangular bulge
The so-called ‘Λ-vortex’ is frequently mentioned in the

transition research, and it is often considered as a prior stage
of hairpin vortices (Sandham & Kleiser, 1992). The ‘Λ-
vortex’ identified by theλ2-criterion in the present transi-
tional channel flow is shown in figure 4(b). At the mean
time, vortex lines, colour-coded by the magnitude of vor-
ticity, are integrated and drawn near theλ2 iso-surface, but
tube-like vortical structures cannot be identified from the
vortex lines.

For comparison, the Lagrangian surface presented in
figure 4(a) at the same timet = 100 shows a triangular
bulge. We can see that the vortex lines drawn in figure 4(a)
are almost on the Lagrangian surface, which also demon-
strates that the Lagrangian surface can be considered as a
good approximation of the vortex surface. It is interesting
to observe that the ridge of the Lagrangian triangular bulge
coincides with the Eulerian ‘Λ-vortex’. We can see that
the vortex lines bend at the edge of the bulge, and vortic-
ity componentsωx andωz have finite values in this region.
From the Lagrangian study, the finite streamwise and wall-
normal vorticities at the edge of the Lagrangian bulge are
the essence of the ‘Λ-vortex’.

Furthermore, from|ωωω| on the vortex lines drawn in fig-
ure 4, there is no obvious vorticity intensification region n-
ear the triangular bulge. This indicates that the mean shear,
rather than the vortical structures with obvious swirling mo-
tions, is dominating in the evolution of Lagrangian surfaces
at this stage.

Stage 2, vorticity intensification
In this stage, the vorticity begins to be intensified in

local regions and the tube-like vortical structures form as
shown in figures 4 and 5. In this process, the evolution of

vorticity becomes important, and the vortical structures start
to play a key role in the evolution along with the background
shear flow.

As shown in figure 4(a), the geometry of Lagrangian
structures implies that the vortex lines attached on the sur-
face bend near the ridge. This means thatωz and ωx are
of finite amplitudes in this region from the inclination of
vortex lines. Under the effect of the main flow shear, the
voticity componetsωx andωz increase in this region. This
implies that the vortex lines are intensively stretched and
the most intensified|ωωω| occurs at the edge of the triangular
bulge.

Furthermore, this process is led by the tip of the bulge
where is the most distant from the wall in the Lagrangian
structure. Moreover, the vortex lines at the tip are the most
highly curved part, so they endure the largest mean shear
and induced velocities. In the Lagrangian view, the bulge
of the surface lifts and elongates in figure 4(a). Then the
surface rolls up, and tube-like structures form at the tip in
figure 5(a). The vortex lines are stretched in the streamwise
direction because of the mean flow shear, and then they are
folded inward at the neck. The folding vortex lines concen-
trate and they are rapidly stretched out with intensified|ωωω|.
The arch (or head) of the hairpin-like structure are pulled
out at this part of the Lagrangian structure.

Stage 3, hairpin-like structures
The ‘hairpin vortex’ is often described as the hairpin-

shaped, tube-like structure. It is noted that the major struc-
ture of the hairpin can be captured by the Eulerianλ2-
criterion in figure 6(b), because the Eulerian criteria have
the capability to identify the ‘vortex core’ at a time instant.
However, the dynamic evolution of the hairpin-like struc-
tures cannot be observed from the Eulerian method in fig-
ures 4(b), 5(b) and 6(b). On the other hand, the dynamic
mechanism of the Lagrangian hairpin structures is provided
by the typical Lagrangian surface presented in figures 4(a),
5(a) and 6(a). In the evolution, the Lagrangian hairpin-
like structure are streached out from the triangular bulge at
t = 106 in figure 6(a) after the vorticity intensification stage.
At the stage aftert = 106, the vorticity distribution of the
hairpin structures could be considered as isolated, thin and
elongated vortex tubes or filaments.

The vortex-induced velocity at this stage can be calcu-
lated by the Biot-Savart law. The geometry of vortex lines
is important in dynamics because the motion of vortex lines
and the Lagrangian surfaces is affected by the self-induced
velocity of the hairpin structures. The induced-velocity at
the tip of the hairpin-like structure is upper backward, so
the hairpin lifts under its self-induction. On the other hand,
the hairpin-like structure elongates in the streamwise direc-
tion controlled by the background shear flow. Under both
effects, the primary hairpin is lifted and stretched.

CONCLUSION
The Lagrangian scalar field is applied in the K-type

transitional channel flow. By tracking the Lagrangian field,
we are able to investigate the evolution of the Lagrangian
structures as the iso-surfaces of the Lagrangian field. The
most typical Lagrangian surface, initially located in the log-
arithm layer, evolves from the streamwise-spanwise plane
to the triangular bulge, and then into the signature hairpin-
like structures. In the evolution, the Lagrangian surfaces
can be approximated as vortex surfaces before significant
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Figure 4. Comparison of Lagrangian and Eulerian vortical structures att = 100. Vortex lines are integrated and drawn on the
surfaces, and colour-coded by the magnitude of vorticity|ωωω|. (a) Lagrangian surface ofφ+

0 = 45, (b) iso-surface ofλ2.

Figure 5. Comparison of Lagrangian and Eulerian vortex structures att = 104. Vortex lines are integrated and drawn on the
surfaces, and colour-coded by the magnitude of vorticity|ωωω|. (a) Lagrangian surface ofφ+

0 = 45, (b) iso-surface ofλ2.

Figure 6. Comparison of Lagrangian and Eulerian vortex structures att = 106. Vortex lines are integrated and drawn on the
surfaces, and colour-coded by the magnitude of vorticity|ωωω|. (a) Lagrangian surface ofφ+

0 = 45, (b) iso-surface ofλ2.
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topological changes. Therefore, the present study provides
a dynamic view of the evolving vortical structures in tem-
poral transitional flow in a Lagrangian perspective.

As the flow evolves, the amplitudes of the disturbances
are intensified. Then the vortical structure gradually forms
and begins to play an important role. The intensification
of the vorticity mainly exhibits at the edge of the triangular
bulge. With the concentrating vortex lines, the Lagrangian
surface rolls up into the hairpin-shaped, tube-like structure.
The evolution of the Lagrangian hairpin-like structure can
be approximated as a vortex filament and described by the
Biot-Savart law. Under the effect of the mean shear and the
self-induction, the hairpin-like structure lifts and elongates.

In summary, the formation and evolution of the La-
grangian structures are extensively studied in a Lagrangian
perspective. Some similarities and differences with the re-
sults from the Eulerian vortex identification criteria are dis-
cussed. It is noted that the continuous temporal evolution
of vortical structures can be elucidated by tracking a unique
Lagrangian surface, which is unlikely using Eulerian meth-
ods.

We remark that the present work only focus on the
early transitional stage, because the deviation between the
Lagrangian surfaces and the vortex surfaces cannot be ig-
nored after the significant topological changes or vortex re-
connections. Thus, a vortex-surface-field method (Yang &
Pullin, 2011a; Pullin & Yang, 2014) should be applied to
study the flow in the late transition in future work. More-
over, the current methodology can be easily applied to other
transitional flows with a sequence of well resolved three-
dimensional velocity data sets from numerical simulations
or experiments.
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