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ABSTRACT
In order to better understand and describe statistical quan-

tities such as the mean velocity or higher order moments of tur-
bulent flows, it is our aim to deduce scaling laws from the infi-
nite hierarchy of multi-point correlation equations. The math-
ematical method employed will be the Lie-point symmetries.
The method is rather generic and will be applied to different
canonical flows, such as channel flows with and without rota-
tion, where rotation about different axes are considered.

Equations of statistical turbulence theory
The velocity U and the normalized pressure P are de-

composed according to the Reynolds decomposition, i.e. U =
Ū + u and P = P̄ + p, where the overbar denotes averaged
quantities and fluctuations are given by lower case letters. With
this the Reynolds averaged Navier-Stokes equations write

∂Ūi

∂ t
+Ūk

∂Ūi

∂xk
=− ∂ P̄

∂xi
+ν

∂ 2Ūi

∂xk∂xk
− ∂uiuk

∂xk
, i = 1,2,3 ,

where t ∈ R+ and x ∈ R3 represent time and position vector.
Viscosity ν > 0 and density has been absorbed into the pressure.

In order to deal with the closure problem of turbulence,
represented through the Reynolds stress tensor uiuk in our equa-
tions, we introduce the multi-point approach Keller & Fried-
mann (1925). Considering the infinite set of correlation equa-
tions has the advantage that the closure problem is somehow
bypassed. Furthermore, the multi-point correlation (MPC) de-
livers additional information on the turbulence statistics such
as length scale information which may not be gained from the
Reynolds stress tensor, alone, which is a single-point approach.

Rather different to the classical approach of correlation
functions, which is based on the fluctuating values of velocity
and pressure, ui and p, we presently first employ the instanta-
neous values Ui and P for the correlation as in this framework
the finding of symmetries is considerably easier.

For this we first define

Hi{n+1} = Hi(0)i(1)...i(n) =Ui(0)(x(0), t) · . . . ·Ui(n)(x(n), t) , (1)

where the index i of the farthermost left quantity refers to its
tensor character, while its superscript in curly brackets denotes
the tensor order. The mean velocity is given by the first or-
der tensor as Hi{1} = Hi(0) = Ūi. Using (1) and employing the
Navier-Stokes equation we derive the MPC equation

Si{n+1} =
∂Hi{n+1}

∂ t
+

n

∑
l=0

[
∂Hi{n+2}[i(n+1) 7→k(l)][x(n+1) 7→ x(l)]

∂xk(l)

+
∂ Ii{n}[l]

∂xi(l)
−ν

∂ 2Hi{n+1}

∂xk(l)∂xk(l)

]
= 0 for n = 1, . . . ,∞ . (2)

where we need to further define

Hi{n+2}[i(n+1) 7→k(l)][x(n+1) 7→ x(l)] =

Ui(0)(x(0), t) · . . . ·Ui(n)(x(n), t)Uk(l)(x(l), t) , (3)

and

Ii{n}[l] =Ui(0)(x(0), t) · . . . ·P(x(l), t) · . . . ·Ui(n)(x(n), t) . (4)

(2) may finally completed by continuity equations for all corre-
lations (see e.g. Rosteck, 2013) which are not shown here. It is
especially the linear form of the correlation equations (2) which
made it possible to derive the sub-sequent symmetries.

Still, Reynolds decomposition and the resulting correlation
functions based on the fluctuating quantities u and p may also
be employed to derive a related MPC tensor

Ri{n+1} = Ri(0)i(1)...i(n) = ui(0)(x(0)) · . . . ·ui(n)(x(n))

and

Pi{n}[l] = ui(0)(x(0), t) · . . . · p(x(l), t) · . . . ·ui(n)(x(n), t) . (5)

From the Navier-Stokes equations follows the transport
equation of the MPC may be derived

Ti{n+1} =
∂Ri{n+1}

∂ t
+

n

∑
l=0

[
Ūk(l)(x(l))

∂Ri{n+1}

∂xk(l)

+Ri{n+1}[i(l) 7→k(l)]
∂Ūi(l)(x(l))

∂xk(l)
+

∂Pi{n}[l]

∂xi(l)

−ν
∂ 2Ri{n+1}

∂xk(l)∂xk(l)
−Ri{n}[i(l) 7→ /0]

∂ui(l)uk(l)(x(l))

∂xk(l)

+
∂Ri{n+2}[i(n+1) 7→k(l)][x(n+1) 7→ x(l)]

∂xk(l)

]
= 0

for n = 1, . . . ,∞ . (6)

The first tensor equation of this infinite chain propagates Ri{2}
which has a close link to the Reynolds stress tensor, i.e.

lim
x(k)→x(l)

Ri{2} = lim
x(k)→x(l)

Ri(0)i(1) = ui(0)ui(1)(x(l)) mit k 6= l ,

(7)
These equations have to be completed by continuity equations
and further permutation conditions, such as Ri j(x(0),x(1)) =
R ji(x(1),x(0)).

The two correlation equations (2) and (6) appear to have
very different character as (2) is linear while (6) is nonlinear.
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Further, in (2) coupling between equations appear only between
equations of order n and n+1. In contrast, in (6) all equations
have a coupling to the second moment due to the last term in
the third line and, additionally, each equation of order n+ has a
coupling to equation of order n and n+2.

Still, physics in both equations is fully equivalent and it is
straight forward to employ the Reynolds decomposition Ui =
Ūi + ui and P = P̄+ p to derive relations between the classical
Ri{n+1} and above Hi{n+1} definitions of correlations

Hi(0) = Ūi(0) , (8)

Hi(0)i(1) = Ūi(0)Ūi(1) +Ri(0)i(1) , (9)

Hi(0)i(1)i(2) = Ūi(0)Ūi(1)Ūi(2) +Ri(0)i(1)Ūi(2)

+ Ri(0)i(2)Ūi(1) +Ri(1)i(2)Ūi(0) +Ri(0)i(1)i(2) (10)

where presently only the first three moments are given.

Lie Point Symmetries
Presently, any symmetry we are referring to is a Lie

symmetry group which constitutes a transformation that maps
equations to itself such as the scaling group t∗ = e2at, x∗ =
eax,T ∗ = T maps the heat equation Tt = Txx to itself i.e. T ∗t∗ =
T ∗x∗x∗ . Apart from deep understanding of the underlaying
physics the key properties of Lie symmetries is that they form
the basis for constructing invariant solutions, in fluid mechan-
ics often referred to similarity solution if a scaling symmetry
is involved. An elementary introduction to the theory of Lie
symmetries is given in Hydon (2000).

Presently, Lie-point analysis allows us to derive special so-
lutions, which, as will be seen later, verify known and new scal-
ing laws of turbulent flows.

The first step is to find Lie-point symmetries of the given
PDE, in our case of the MPC equations (2), which, at a later
stage, will be reformulated into the Ri{n} formulation, which al-
lows to reduce the two-point second moments to the Reynolds
stresses. The symmetries to be searched for are transforma-
tions of the independent variables t,x(0),x(1), ... and the depen-
dent functions Hi{n} , Ii{n−1}[q], where the transformed equations
are equivalent to the MPC equations, i.e. form invariant under
these transformations.

As expected, all symmetries of the Navier-Stokes equa-
tions transfer to the MPC equations (2), i.e. the Galilean group
plus some scaling symmetries (see e.g. Rosteck, 2013). Here
we will only give the two scaling groups needed below, which,
in the limit of vanishing viscosity, read

Ts1 : t∗ = t, x ∗ = ea1x , r( j)∗ = ea1r( j),

H∗i{n} = ena1 Hi{n} , I∗i{n} = e(n+2)a1 Ii{n} , (11)

referring to scaling of space, while scaling of time reads

Ts2 : t∗ = ea2 t, x ∗ = x , r( j)∗ = r( j),

H∗i{n} = e−na2 Hi{n} , I∗i{n} = e−(n+2)a2 Ii{n} . (12)

Most important, however, the system (1) admits additional sym-
metries, of purely statistical nature. They were first recognized
in Oberlack & Rosteck (2010) and significantly extended in
Rosteck (2013) and may be referred to as statistical symmetries.

The statistical symmetries for the H-I-system (2) can be
separated into three distinct and generic sets of symmetries

T̄ ′1 : t∗ = t, x ∗ = x , r∗(l) = r(l)+a(l),

H∗{n} =H{n}, I
∗
{n} = I{n}, (13)

T̄ ′2{n} : t∗ = t, x ∗ = x , r∗(l) = r(l),

H∗{n} =H{n}+C{n}, I
∗
{n} = I{n}+D{n}, (14)

T̄ ′s : t∗ = t, x ∗ = x , r∗(l) = r(l),

H∗{n} = eksH{n}, I
∗
{n} = eks I{n}. (15)

In the specific case of turbulent parallel shear flows, where x2 is
the wall-normal coordinate, an additional set of symmetries is
admitted (see Rosteck, 2013) given by

T̄ ′z{n} : t∗ = t, x∗2 = x2, r
∗
(l) = r(l),

H∗{n} =H{n}+A{n}x2, I
∗
{n} = I{n}. (16)

For the derivation of the symmetries (13), (14) and (15) it was
crucial to use the form (2), while in the following we concen-
trate on two-point correlations and Reynolds stresses which are
based on fluctuations ui and p, where the Reynolds stress ten-
sor uiu j(x ) and the two-point correlation tensor Ri j(x ,r) =

ui(x )u j(x +r) are connected by the relation

uiu j(x ) = lim
r→0

Ri j(x ,r) . (17)

Using (8)-(10), the statistical symmetries (13)-(16) may be
re-written for the one-point quantities Ūi and uiu j. From (15)
we find

T̄ ′s : t∗ = t, x ∗ = x , Ū∗i = easŪi,

uiu j
∗ = eas

[
uiu j +(1− eas)ŪiŪ j

]
, · · · . (18)

where the first two of an infinite row of symmetries (14) are
given by

T̄ ′2{1} : t∗ = t, x ∗ = x , Ū∗i = Ūi +Ci,

uiu j
∗ = uiu j +ŪiŪ j− (Ūi +Ci)

(
Ū j +C j

)
, · · · (19)

and

T̄ ′2{2} : t∗ = t, x ∗ = x , Ū∗i = Ūi,

uiu j
∗ = uiu j +Ci j, · · · . (20)

where in the above groups as, Ci and Ci j are group parameter.
Finally, (16) may reformulated accordingly such that for

the mean velocity it has the form

T̄ ′z{1} : x∗2 = x2, Ū∗1 = Ū1 +b1x2, uiu j
∗ = uiu j, · · · (21)

while for the stresses we similarly obtain

T̄ ′z{2} : x∗2 = x2, Ū∗1 = Ū1, uiu j
∗ = uiu j +bi jx2, . · · · . (22)
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The above statistical groups (18)-(22) play an important role
when calculating scaling laws for higher order moments Ober-
lack & Rosteck (2010); Rosteck (2013). In particular in Rosteck
(2013) it was shown that (22) plays an important role for the
second moments scaling laws for various shear flow, including
the present ones, as may be taken from results below. However,
in a companion paper Avsarkisov et al. (2015) of this confer-
ence the corresponding symmetry (21) for the mean velocity
was substantiated the first time in DNS data of a turbulent Cou-
ette flow.

Group invariant solutions
From the set of all symmetries given above me may now

construct invariant solutions which may be interpreted as turbu-
lent scaling laws. For this it is important to note that group in-
variant solutions may only be properly constructed from the in-
finitesimal form of the groups (18)-(22) (see e.g. Hydon, 2000).
Further, we should note that infinitesimals form a linear vector
space and hence may be combined linearly. Without giving de-
tails of its derivation we present the invariant surface condition

dx2

a1x2 +a4
=

dŪ1

(a1−a2 +as)Ū1 +C1
=

dR11

ξR11

= · · · , (23)

where its integration defines the invariant solutions for the mean
velocity and higher moments. Different to the turbulent Couette
flow which is investigated in Avsarkisov et al. (2015) we may
presently skip the symmetry (21) as this appears to be special
for the Couette flow and has not been observed in any other
turbulent shear flow yet.

Turbulent scaling laws
Before we detail on turbulent wall-bounded shear flows,

which is the primary focus of the present contribution, we may
briefly mention decay of isotropic turbulence. For this type of a
flow various different classes of scaling laws have been derived
Oberlack & Rosteck (2010), Rosteck (2013) and Oberlack &
Zieleniewicz (2013).

First of all, classical solution may be reproduced, where
the kinetic energy decays algebraically with k ∼ (t + t0)−m and
the integral length scale growth according to `t ∼ (t + t0)n. For
this, however, it is important to note that due to the additional
scaling group (15) values for m and n may not intimately con-
nected as predicted by Birkhoff or Loitsianskii integrals and its
generalizations.

Moreover, two different exponential scaling laws exist,
where in both cases the turbulent kinetic energy decays as
k∼ e−at . The first case refers to a constant integral length scale
`t ∼ const. and appears to describe decaying turbulence gener-
ated by a fractal grid. The second has an increasing integral
length scale according to an exponential function `t ∼ ebt . This
type of behavior has not been observed before and most likely
is induced by a forcing of Navier-Stokes equations according to
−U /τ , where τ is a constant time scale.

Below we will primarily focus on wall-bounded shear
flows and for this we will start with the most well-known of
all scaling laws i.e. the logarithmic law of the wall. For this the
scaling of space (11) and time (12) with the group parameter a1
and a2 as well as the statistical scaling symmetry (18) with the
group parameter as are essential. We combine the three groups
to a three-parameter group of the form

T̄ ′s1,s2,s : x∗2 = ea1 x2, Ū∗1 = ea1−a2+asŪ1, · · · . (24)

As the key dimensional parameter for the logarithmic law
of the wall, the friction velocity uτ =

√
τwall/ρ , has the dimen-

sion of a velocity, this may be considered a symmetry breaking
quantity. For the three-parameter group (24) this means that
scaling of the velocity is suppressed, which results in the con-
straint

a1−a2 +as = 0 . (25)

Using the latter in the condition for invariant solution (23) it is
apparent that the two terms on the left combine to logarithmic
function. Introducing the classical +-variables we obtain the
log-law in dimensionless form

u+ =
1
κ

ln(x+2 +A+)+C , (26)

where x+2 is the wall-normal direction. In a similar fashion, the
Reynolds stresses can be derived from the two-point correla-
tions, so that we finally gain

uiu j =
Di j

x+2 +A+
+Bi j , i j 6= 11 (27)

u1u1 =
D11

x+2 +A+
− 1

κ2 ln2(x+2 +A+)

−2
C
κ

ln(x+2 +A+)+B11 . (28)

Therein, κ , A+, C, γ , Di j and Bi j are constants.
As mentioned above, (26) and (28) is validated against the

data of Jimenez & Hoyas (2008); Hoyas & Jiménez (2008). In
Figure 1 scaling of (26) in the range 55 ≤ x+2 ≤ 325 is consid-
ered, where parameters have been adjusted to κ = 0.405 and
C = 5.07. In the region where the log-law (26) has its validity
we also plot the Reynolds stress tensor (27) and (28) depicted
in Figure 2 and in Figure 3.

In the 11-component, the leading order term in formula
(28) is the logarithm squared with the factor 1/κ2. It is impor-
tant to note that exactly this term is fixed through the parameter
κ determined by the mean velocity. If κ would be smaller, we
would not be able to fit the 11-component to the DNS data.
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Figure 1. DNS data of Jimenez & Hoyas (2008); Hoyas &
Jiménez (2008) are compared to the scaling law (26).
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Figure 2. DNS data of Jimenez & Hoyas (2008); Hoyas &
Jiménez (2008) for the stresses u1u1

+ (�), u2u2
+ (4) and

u3u3
+ (+) are compared to the scaling laws (27) (solid lines).
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Figure 3. DNS data of Jimenez & Hoyas (2008); Hoyas &
Jiménez (2008) for the stresses u1u2

+ is compared to the scaling
laws (27) (solid lines).

The method of Lie symmetries is not restricted to sim-
ple shear flows and subsequently we consider rotating turbulent
channel flows, for which different scaling laws are calculated
depending on the direction of the rotational axis (details may be
taken from the PhD thesis by Rosteck 2013).

Though results are apparently not limited to the mean ve-
locity, the actual results for the stresses and higher order mo-
ments may be extremely involved, and, hence, we presently
limit formulas to the mean velocity, while details for higher mo-
ments may be taken from Rosteck (2013).

In the first test case we consider a pressure-driven turbulent
channel flow. For the center region of the flow it was already
presumed in Oberlack (2001), that we attain a maximum degree
of symmetry and, hence, integration of the two far most terms
on the left of the invariant surface condition (23) yields a power
law. Reformulating in dimensional variables we obtain

Ūde f+ =
Ucl −Ū(x2)

uτ
= β

(x2

h

)α
, (29)

which is compared to the DNS data of Jimenez & Hoyas (2008);
Hoyas & Jiménez (2008) in Figure 4.
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Figure 4. DNS data of Jimenez & Hoyas (2008); Hoyas &
Jiménez (2008) are compared to the scaling law (29).

Correspondingly, stresses for this region are compared in
Figure 5.
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Figure 5. Comparison of the Reynolds stress scaling law (−)
(formula omitted) with the DNS data of Jimenez & Hoyas
(2008); Hoyas & Jiménez (2008).

The following two test cases are variations of the previ-
ously considered Poisseulle flow imposing system rotation.

In the first test case we assume span-wise rotation, i.e. the
axis of rotation is parallel to x3, i.e. only Ω3 is non-zero. Here,
a first attempt to analyze this flow applying Lie symmetry anal-
ysis was published in Oberlack (2001) giving a linear mean ve-
locity with its gradient is proportional to the rotational speed.

The more recent analysis Rosteck (2013) showed that the
linear behavior is only true in the limit of large Ω3 and, in fact,
an exponential behavior appears to be the correct solution to this
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problem

Ū1(x2)−Ūcl

Ω3h
= A(Ro2)

(
eγ(Ro3)x2/h−1

)
, (30)

where A(Ro3) and γ(Ro3) are unknown functions of the rota-
tion number Ro3 = 2Ω3h

Ub
, though its functional form has not

been determined from symmetry theory yet. Ub and Ūcl are re-
spectively bulk and center line velocity. γ(Ro3) converges to
zero for increasing Ro3, while A(Ro3) tends to a constant in this
limit. Carrying out the latter limit Ro3→ ∞ we obtain the well-
known scaling law for a rotating channel about the x3-axis (see
Oberlack, 2001)

U1(x2) = A∞Ω3x2 +Ūcl . (31)

A clear validation of (30) and (31) is given in Figure 6 for var-
ious Ω3 taken from the DNS of Kristoffersen & Andersson
(1993). Interesting enough the value for A∞ appears to approach
the value 2, which corresponds to a zero mean vorticity in an
absolute from of reference.

−1 −0.5 0 0.5 1−25

−20

−15

−10
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0
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x2/h

¯ +

1

 

 

U ¯ +

cl- U

Figure 6. Comparison of the mean velocity scaling law (−)
in (30) with the DNS data (· · · ) of Kristoffersen & Andersson
(1993) at various rotation rates Ro3 =

Ω3h
uτ

and Reτ = 194.

In respect to the stresses the DNS data of Kristoffersen &
Andersson (1993) only provide the kinetic energy, which are
compared to the scaling law in Figure 7.

In the next test case we assume wall-normal rotation i.e. ro-
tation about the x2-axis and, due to the Coriolis induced cross
flow in x3-direction, two velocity components Ū1 and Ū3 have
to be taken into consideration. Again, both averaged velocities
may only depend on x2. Rewriting the underlying symmetries
in a rotating frame the resulting scaling laws is of the form:

Ū1 =
(x2

h

)b [
a1 cos

(
cRo2 · ln

x2

h

)

+a2 sin
(

cRo2 · ln
x2

h

)]
+d1(Ro2)

Ū3 =
(x2

h

)b [
a1 sin

(
cRo2 · ln

y
h

)
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Figure 7. Comparison of the turbulent kinetic scaling law (−)
(formula omitted) with the DNS data (· · · ) of Kristoffersen &
Andersson (1993) at various rotation rates Ro3 =

Ω3h
uτ

at Reτ =

194.

−a2 cos
(

cRo2 · ln
x2

h

)]
+d2(Ro2) . (32)
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Figure 8. Comparison of the mean flow scaling law (−) in (32)
with the DNS data (· · · ) of Mehdizadeh & Oberlack (2010) at
Reτ = 360 and Ro2 = 0.011.

The latter is compared to the DNS data of Mehdizadeh
& Oberlack (2010) at Reτ = 360. Results are depicted for
three different rotation numbers Ro2 = 2Ω2h

uτ0
in the Figures 8,

9 and 10 exhibiting an excellent fit in the center of the chan-
nel for all cases. Here, uτ0 refers to the friction velocity of
the non-rotating case. It is to note that from the DNS data in
Mehdizadeh & Oberlack (2010) we find that with an increasing
Ω2 the magnitude of Ū1 and Ū3 switch positions since with in-
creasing rotation rates Ū1 is suppressed while Ū3 increases up
to a certain point and decreases again though to a smaller ex-
tend compared to Ū1. This behavior is exactly described by the
scaling law (32).

From the previous three cases we have singled out the case
with Ro2 = 0.072 to present the stresses shown in Figure 11.
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Figure 9. Comparison of the mean flow scaling law (−) in (32)
with the DNS data (· · · ) of Mehdizadeh & Oberlack (2010) at
Reτ = 360 and Ro2 = 0.072.
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Ū +
1
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Figure 10. Comparison of the mean flow scaling law (−) in
(32) with the DNS data (· · · ) of Mehdizadeh & Oberlack (2010)
at Reτ = 360 and Ro2 = 0.18.

Conclusion
The key results of present abstract ist that the symmetry

based turbulence theory in Oberlack (2001) has been consider-
able extended to be application higher order multi-point corre-
lations. Presently, we applied it to several canonical flows such
as decaying turbulence and wall-bounded turbulent shear flows
including frame rotating and wall-transpiration and we have ex-
plicitly computed scaling laws for both mean velocity and sec-
ond moments.
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