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ABSTRACT
Starting with the Navier-Stokes Equation (NSE), we

derived the conditions for self-preservation (SP) in a zero-
pressure gradient (ZPG) turbulent boundary layer. The anal-
ysis showed that it is strictly not possible to obtain SP in
a ZPG turbulent boundary layer, unless the viscous term
is eliminated from the NSE. This can be achieved in a
smooth wall boundary layer only when the Reynolds num-
ber (Re) approaches infinity. In the case of rough walls,
it is noted that the viscous effects can be compensated by
surface roughness and therefore, SP is achievable, irrespec-
tive of Re. In this case, SP analysis showed that velocity
scale (u∗) must be constant and the length scale (l) should
vary linearly with streamwise distance (x). These SP con-
ditions are tested using experimental data taken over a sim-
ilar streamwise fetch on a smooth wall and several types of
rough walls. It is observed that complete SP in a ZPG turbu-
lent boundary layer is possible when the roughness height
(k) increases linearly with x, where both the SP constraints
(u∗ = Uτ = constant and l = δ ∝ x) are met. In the present
rough wall study, Uτ is observed to remain practically con-
stant in x and δ ∼ x and appears to be the next best candidate
for achieving SP.

INTRODUCTION
In general, researchers strive to obtain some kind of

scaling parameters based on experimental and/or numerical
data that enable them to model or predict turbulence quanti-
ties in flows that are experienced in real engineering appli-
cations but are beyond the scope of testing in the existing
laboratory facilities. This is not surprising considering the
turbulence closure problem. There are two commonly used
approaches to obtain scaling parameters and there seems to
be some confusion in the turbulence research community
on the difference between the two approaches. The first
of the two, scaling analysis (hereafter, SA), refers to find-
ing a length scale and a velocity scale that leads to collapse
of normalised mean turbulence quantities. This is usually
done in an ad hoc fashion via dimensional analysis, empiri-
cal methods, asymptotic arguments and order of magnitude
arguments. The second approach, self-preservation (here-
after, SP), seeks similarity solutions based on one length
scale and one velocity scale as the flow develops in the
streamwise direction. For example, the mean velocity and
turbulence intensity profiles should not change with x when
normalised by these scales [Townsend, 1976].

Although, both these approaches aim to find scaling
parameters, they are fundamentally quite different. SA re-

lies on certain assumptions about the governing equations
or experimental data over a finite range of Re, and hence
the scaling parameters are not uniquely determined. This
is clearly evident in the literature, where different velocity
and length scales have been proposed in the past. For in-
stance, George & Castillo [1997] suggested that free stream
velocity (U1) is the correct velocity scale by arguing that it
leads to a similarity solution of the mean momentum equa-
tion in the outer region in the asymptotic limit of infinite
Re. Jones et al. [2008] argued, again based on asymptotic
arguments, that Uτ is an equally valid velocity scale. In the
same line of thought, Zagarola & Smits [1998] insisted that
the ratio of outer and inner velocity scales must approach a
constant value at very large Re and proposed U1δ

∗/δ as the
outer velocity scale (δ and δ∗ are the boundary layer thick-
ness and displacement thickness respectively). Similarly, a
wide range of length scales have been suggested aside from
the conventional inner length scale (ν/Uτ ; Uτ is the mean
friction velocity and ν is the kinematic viscosity of the fluid)
and the outer length scale (δ). For example, Rotta [1962]
used dimensional arguments to replace δ by U1δ

∗/Uτ and
Weyburne [2008] reasoned that δ∗ is the correct length scale
based on the requirement that the area under all the scaled
velocity profiles in a self-preserving flow must be equal.

On the other hand, in SP approach, the constraints on
the velocity and length scales are derived after considering
if the governing equations can admit an SP solution. Hence,
the scaling parameters obtained through SP are unique. For
instance, Townsend [1976] obtained unique scaling param-
eters for free shear flows, such as, jets and wakes through
careful analysis of the governing equations. Another ma-
jor difference between the two approaches is that SP analy-
sis is only applicable to a spatially evolving turbulent flow
whereas SA is used on data taken in the same (streamwise
developing) or different wind tunnel facilities. This implies
that the initial conditions and the upstream boundary con-
ditions can affect the way in which a flow approaches SP
[Townsend, 1976].

Without proper understanding about how different
flows develop in the streamwise direction, it would be in-
correct to compare two kinds of flows that exhibit differ-
ences in scaling, for example, smooth and rough wall flows.
In smooth wall flows, fluid viscosity plays a major role
in determining the dynamics of a turbulent boundary layer
by providing the boundary condition to the flow, and pre-
vents the boundary layer to achieve complete SP. On the
other hand, in a rough wall flow, surface roughness can
eliminate the viscous effects to different degrees depend-
ing on the geometry and dimensionality of the roughness
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and therefore, SP is achievable. Such a care has not been
exercised in most studies where comparisons are made be-
tween smooth and rough wall flows. Consequently, it has
led to the controversy over “outer-layer” similarity hypothe-
sis - whether or not the outer region of a turbulent boundary
layer is affected by surface roughness. There is currently no
definite consensus on the validity of this hypothesis, [e.g.
Jiménez, 2004; Antonia & Djenidi, 2010]. One can cite
Grass [1971], Raupach [1981], Ligrani & Moffat [1986],
Bandyopadhyay & Watson [1988], Schultz & Flack [2003],
Flack et al. [2005], Schultz & Flack [2005], Krogstad et al.
[2005], Bakken et al. [2005] and Wu & Christensen [2007]
whose experiments over different rough surfaces (sand
paper, mesh screen, cylinders, spheres, 2D grooves)
supported the outer-layer similarity. On the other
hand, Krogstad et al. [1992], Shafi & Antonia [1997],
Tachie et al. [2000], Keirsbulck et al. [2002], Tachie et al.
[2003], Bhaganagar et al. [2004] and Djenidi et al. [2008]
found differences in the outer layer between smooth and
rough walls. This state of affairs only serves to underline
the importance of identifying the appropriate scaling pa-
rameters.

We attempt here to obtain scaling parameters for a ZPG
turbulent boundary layer through a formal analysis based
on the NSE. Our motivation here is to understand if there
are any fundamental differences in how different boundary
layer flows evolve towards a SP state.

CONDITIONS FOR SELF-PRESERVATION
At first, we start carrying out the SP analysis for a

steady state ZPG two-dimensional turbulent boundary layer
for which the momentum equation in the streamwise direc-
tion read:

U
∂U

∂x
+ V ∂U

∂y
+ ∂uv

∂y
+ ∂(u2 − v2)

∂x
= ν ∂2U

∂y2
(1)

where U , V are the streamwise (x-direction) and wall-
normal (y-direction) components of the mean velocity re-
spectively. u2, v2 and uv are the streamwise, wall-normal
and shear stresses respectively. Here, the overline repre-
sents averaging in both time and across the spanwise direc-
tion. Following Townsend’s formulation for SP [Townsend,
1976], we assume:

U1 −U = u∗f(η) (2a)

u2 = v∗2gu(η) (2b)

v2 = v∗2gv(η) (2c)

uv = v∗2guv(η), (2d)

where U1 is the freestream velocity, u∗ and v∗ are two scal-
ing velocities dependent on x but not necessarily equal and
η = y/l with l a scaling length varying with x. The func-
tions f , gu, gv and guv are functions dependent on η only.
Substituting expressions (2a - 2d) into (1) and using the con-
tinuity equation (∇.U = 0) to solve for V , leads to, after

some trivial manipulations,

−U1
du∗
dx

f +U1
u∗
l

dl

dx
ηf ′ + u∗ du∗

dx
f2

−u∗
l

d(u∗l)
dx

f
′ {∫ η

0
fds} + v∗2

l
g
′
uv + dv∗2

dx
(gu − gv)

−v∗2
l

dl

dx
η(g′u − g′v) = −ν u∗

l2
f ′′ (3)

where the prime and double prime superscripts respectively
denote the first and the second order derivatives with respect
to η. Note that we do not identify u∗ with the friction veloc-
ity Uτ = √τw/ρ (τw and ρ are the wall shear stress and the
fluid density, respectively) or U1 nor l with δ, the boundary
layer thickness.

Multiplying all the terms of (3) by l/v∗2 makes the co-
efficient of g′uv equal to 1, and accordingly, SP is satisfied
across the entire boundary layer if,

U1l

v∗2
du∗
dx
= C1 (4a)

U1
u∗
v∗2

dl

dx
= C2 (4b)

u∗l
v∗2

du∗
dx
= C3 (4c)

u∗
v∗2

d(u∗l)
dx

= C4 (4d)

1 = C5 (4e)

l

v∗2
dv∗2
dx
= C6 (4f)

dl

dx
= C7 (4g)

νu∗
v∗2l = C8, (4h)

where the constants Ci(i = 1...7) are all nonzero and inde-
pendent of x. Solving (4g) yields l ∝ x. On the other hand,
taking the ratio of (4b) and (4h), we get,

U1l

ν

dl

dx
= C2

C8
, (5)

which leads to a contradictory result that l ∝ x1/2. In order
to avoid this inconsistency, one has to omit either of the
two conditions, (4g) and (4h). In other words, one has to

drop either ∂(u2−v2)
∂x

or ν ∂2U
∂y2 in eq. (1). The former is

possible when one assumes that the magnitude of ∂(u2−v2)
∂x

is negligible in comparison to the other terms of eq. (1). The
latter term (viscous term) is neglected using the asymptotic
argument, Re→∞. In his study, George & Castillo [1997]
used both these simplifications to conclude that U1 is the
velocity scale for the outer region of a turbulent boundary
layer. Since, he omitted both the conditions (4g) and (4h),
George & Castillo [1997] could not obtain a constraint for
the length scale. Similarly, Townsend [1976] assumed that
∂(u2−v2)

∂x
is relatively small and omitted it in his analysis.

At this point, it is important to note that such assumptions
about the individual terms in (1) can only give solutions to
a confined region of the boundary layer and are not valid
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across the entire boundary layer. Accordingly, eq. (3), now
becomes

−U1
du∗
dx

f +U1
u∗
l

dl

dx
ηf ′ + u∗ du∗

dx
f2

−u∗
l

d(u∗l)
dx

f
′ {∫ η

0
fds} + v∗2

l
g
′
uv + dv∗2

dx
(gu − gv)

−v∗2
l

dl

dx
η(g′u − g′v) = 0, (6)

which holds in the region of the boundary layer where the
effects of viscosity are negligible, i.e., outside the near-wall
region. This is totally consistent with Townsend’s statement
that if the motion in the viscous layer or around the rough-
ness elements allows mean velocities and stresses of self-
preserving forms, self-preservation flow may be possible
over the fully turbulent part of the flow [Townsend, 1976].
This suggests that SP is possible in a smooth wall TBL only
when Re is close to infinity. In this case, the result is the
same as one obtains in SA by using asymptotic arguments.
It is to be noted that this result and any other asymptotic
results are not very useful, at least, for modelling purposes.
Besides, such asymptotic results cannot be verified using
experimental data.

An alternate way to eliminate the viscous effects is to
add surface roughness, where the roughness removes the
viscous effects when averaged in the streamwise direction
over certain distance, for example, one wavelength (λ) of
the roughness elements. This implies that one can obtain
SP in rough wall boundary layers, irrespective of Re. How-
ever, one has to find such a surface roughness that can ex-
actly compensate for the viscous losses. For this, we can
rely on the SP analysis to obtain conditions that aid us in
constructing such a roughness geometry. At first, we rec-
ollect from the above discussion that l ∝ x (since viscous
effects are nullified due to surface roughness). Then, taking
the ratio of (4c) and (4a), we get

u∗ = C3

C1
U1. (7)

The constraint (7) suggests that U1 can be a scaling ve-
locity as it is constant in the present case (ZPG), yielding
u∗ = constant. George & Castillo [1997] noted that U1 is
the correct scaling velocity for the smooth wall, however,
only valid in the outer region that is beyond the region of
influence of viscous effects. On the other hand, in rough
wall flows, Kameda et al. [2008] showed that Uτ reaches a
constant value after some initial development length. This
implies that Uτ can be treated as u∗ in the case of rough
wall flows. Note that this Uτ is primarily contributed by the
form drag and has no contribution from the viscous drag. In
summary, one has to satisfy the conditions, u∗ = constant in
x and l ∝ x in a rough wall, for it to achieve exact SP.

TESTING IN SMOOTH AND ROUGH WALLS
The above SP conditions are tested using experimen-

tal data taken over a similar streamwise fetch on a smooth
wall [Kulandaivelu, 2012] and several types of rough walls
(λ = 4k, Krogstad & Antonia [1999]; λ = 8k, current study;
k ∝ x, Kameda et al. [2008]). Here, λ is the spacing be-
tween two adjacent roughness elements and k is the rough-

ness height. The experimental conditions of smooth and
rough wall boundary layers are summarised in table 1.

In figures 1(a & b), we compare the distributions of
mean velocity and velocity defect between smooth and
rough wall flows using δ and Uτ as scaling parameters.
Note that, δ99 is used for δ in both smooth and rough wall
boundary layers. For the smooth wall data, Uτ has been de-
termined by matching the logarithmic mean velocity profile
to the constants κ = 0.384 and A = 4.17 [Chauhan et al.,
2009]. For the present rough wall, Uτ has been calcu-
lated using the static pressure measurements around one of
the roughness elements [see Kamruzzaman et al., 2014, for
full details] and the error in the origin (d0) is determined
by calculating the centroid of the moments of the pressure
forces acting on the roughness element (see Jackson [1981];
Leonardi et al. [2003], for a full description of the method).
Note that the results from this method have been verified
against the Uτ values evaluated using the Von-Karman mo-
mentum integral equation (Cf/2 ≈ dθ/dx) for a ZPG tur-
bulent boundary layer [Kamruzzaman et al., 2014]. In the
measurements of Kameda et al. [2008], Uτ has been ob-
tained independently using a drag balance.

Looking at figure 1(a), we note that the mean profiles
scaled significantly better with Uτ and δ over the rough
walls in comparison to the smooth wall case. This supports
our previous observation that it is not possible to obtain ex-
act SP in a smooth wall boundary layer. The better collapse
over the rough wall data implies that the SP conditions are
better satisfied in rough walls. In λ = 4k and 8k cases, the
constraints are only approximately satisfied while they are
exactly met in the rough wall with k ∝ x. This is better il-
lustrated in figures 2(a & b), where the trends of Uτ and δ in
x are respectively plotted. It is clear that Uτ is continuously
decreasing in x in λ = 4k and 8k cases and therefore, SP is
not completely achieved. In the case of k ∝ x, Uτ is fluctu-
ating about some mean value and appears to have reached a
constant value just after x = 2.2 m. Further, there is a clear
linear trend of δ in x over this roughness. Interestingly, we
found that Uτ is changing at a very slow rate in x in the
λ = 8k case and δ ∼ x and hence, the rough wall (λ = 8k)
appears to be the next best candidate for achieving SP. This
is also justified based on the results from our previous study
[Kamruzzaman et al., 2014], where we noted that the pres-
sure drag over this roughness alone contributed to the total
drag, suggesting that viscous effects are almost nullified in
this roughness geometry.

Looking further, the velocity defect plots shown in fig-
ure 1(b) seem to indicate that Uτ and δ are good scaling
parameters across most of the boundary layer over both
smooth and rough surfaces. This can be understood by con-
sidering the quantity U1/Uτ = √2/Cf = S. Here, S can
be treated as the ratio of inner and outer velocity scales,
namely, Uτ and U1 respectively. We further note that S is
constant (see, eq. (7) with u∗ = Uτ ) for a self-preserving
rough wall flow and its deviation from a constant value in-
dicates the failure of the velocity scaling over the smooth
walls. Now, when we compute (U1 − U)/Uτ along the
streamwise direction, we are actually removing those dif-
ferences and hence there is a better collapse of the smooth
wall velocity defect plots in figure 1(b). Nonetheless, we
still note some deviations in the near-wall region over the
smooth wall, where the viscous effects are dominant. No
such deviations are seen over the rough wall. These obser-
vations seem to suggest that the surface roughness can sig-
nificantly alter the region of influence of the viscous effects
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Figure 1: Comparison of (a) mean velocity and (b) velocity defect plots: smooth wall (black symbols, 1.6 m ≤ x ≤ 3.75 m,
7300 ≤ Reθ ≤ 10850, Kulandaivelu [2012]); rough wall (green symbols, λ = 4k, 1.6 m ≤ x ≤ 2.6 m, 4000 ≤ Reθ ≤ 5600,
Krogstad & Antonia [1999]); rough wall (blue symbols, λ = 8k, 1.4 m ≤ x ≤ 2.8 m, 8100 ≤ Reθ ≤ 14100, present study); and
rough wall (red symbols, k ∝ x, 1.56 m ≤ x ≤ 3.15 m, 4500 ≤ Reθ ≤ 8600, Kameda et al. [2008]). Uτ and δ are the normalising
velocity and length scales respectively. The symbols represent different streamwise locations. Note that mean velocity plots in
λ = 8k and λ = 4k are shifted by 3 and 6 units respectively for clarity.
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Figure 2: Streamwise variation of (a) Uτ and (b) δ in
different rough walls compared in this study (λ = 4k,
Krogstad & Antonia [1999]; λ = 8k, current study; k ∝ x,
Kameda et al. [2008]). See table 1 for symbols.

and thereby enable a flow to achieve SP.

CONCLUSIONS
An SP analysis of a ZPG turbulent boundary layer

has been carried out starting with the Navier-Stokes equa-
tion. It is observed that exact SP is not possible in the
case of smooth wall turbulent boundary layer, except when
Re → ∞. Further, our analysis showed that SP is possible
over rough walls if the surface roughness can eliminate vis-
cous effects completely. It is noted that the SP conditions
are exactly satisfied when the roughness height is increas-
ing linearly in x, which is also seen in the total collapse of
mean velocity and velocity defect plots from experimental
data over such a rough wall. The results from this study are
significant as they give some insight into how a rough wall
affects the viscous effects in the near wall region and pro-

vides a scope for further numerical/experimental studies to
provide some physical explanation of this mechanism.
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