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ABSTRACT 

A direct numerical simulation of turbulent pipe flow is 
performed at Reτ = 3008 with a long streamwise domain 
length (30R) to investigate wall scaling laws in the physical 
and wavenumber spaces. The power law follows the 
streamwise mean velocity in the overlap region, y+ = 90 – 
300, evaluated by the power law indicator function. The 
scale-separated Reynolds shear stress shows that the large-
scale motions (λx

+ > 3000) are more responsible to construct 
the constant-stress layer than the small-scale motions (λx

+ < 
3000), and thus it is proposed that the large-scale motions 
more contribute to the growth of the mean velocity in the 
overlap region than the small-scale motions. In the pre-
multiplied energy spectra of the streamwise velocity 
fluctuations, the kx

-1 region ssociates with the attached 
eddies appeared in λx/R = 2 – 5 at y+ = 90 – 300 with the 
bimodal distribution. Linear growth of small-scale energies 
to large-scale energies helps to appear the kx

–1 region at 
high Reynolds number. 
 
 
INTRODUCTION 

Scientific technical advancements have enabled us to 
reliably measure flow velocity profiles at high Reynolds 
numbers of up to Reτ ≈ 105 in experimental turbulent pipe 
flows (Hultmark et al. 2013). Many direct numerical 
simulations (DNSs) of turbulent pipe flows have been 
performed, although the Reynolds numbers in these 
simulations have been limited to Reτ = O (103) due to the 
massive computational power and cost. The previous 
highest Reynolds number in DNS of turbulent pipe flow 
was Reτ = 2003 in short streamwise domain length (Chin et 
al. 2014a). Since a streamwise domain length is an 
important parameter to capture very-long meandering 
structures without the distortion of high-order statistics, the 
DNS of the high Reynolds number with the long enough 
streamwise domain is demanding significantly. 

Recently the streamwise mean velocity (U), which is the 
most fundamental quantity, has been newly focused on 
many researchers (e.g. Marusic et al. 2013). However the 
validation of the mean velocity is limited to the spatial 
resolutions of flow fields, because the indicator functions of 
the mean velocity are determined by the spatial derivatives 

along the wall-normal direction. It is known that there is the 
overlap region, where the inner and outer scalings are 
simultaneously satisfied. The inner scaling variables are the 
friction velocity (u τ) and the viscous length scale (ν/uτ), 
where ν is the fluid kinematic viscosity. The outer scaling 
variables are the flow thickness, but the appropriate velocity 
scale is the same as that used in the inner region. These two 
scales lead to the most famous logarithmic law (log law) in 
the overlap region, U+ = κ-1log(y+) + B, where κ is the von 
Kármán constant, B is the additive constant, y is the wall-
normal distance, and the superscript + indicates the inner 
scaling. Most experimental and numerical studies of wall-
bounded turbulent flows have documented the log law over 
a wide range of Reynolds numbers (Monty et al. 2009; 
Marusic et al. 2013); however, turbulent pipe flows do not 
always follow the log law in the mean velocity. Wu & Moin 
(2008) showed the power law in the mean velocity (Reτ = 
1142), defined as U+ = C(y+)γ, where C is the proportional 
constant and γ is the power constant. Chin et al. (2014a) 
reported that the log law did not exist up to Reτ = 2003. In 
experiments (Reτ > 5000), McKeon et al. (2004) observed 
both the power and log laws, depending on y+: the power 
law was observed over 50 < y+ < 300 and the log law was 
observed over 600 < y+ < 0.12Reτ. However, experimental 
studies have revealed that the log law applies in pipe flow as 
well as channel flow at Reτ = 1000 – 3000 (Monty et al. 
2009). Note that at extremely high Reynolds numbers, the 
mean velocity in turbulent pipe flow was found to naturally 
converge to the log law (Hultmark et al. 2013). These 
distinct laws that conflicted in the overlap region motivate 
us to simulate a high-Reynolds-number turbulent pipe flow 
in the present study.  

As the Reynolds number is increased up to Reτ ≈ 2000, 
the outer regions of the pre-multiplied streamwise energy 
spectra of the streamwise velocity fluctuations (kxΦuu

+) 
become prominent (Hutchins & Marusic 2007). Kim & 
Adrian (1999) first observed the existence of very-large-
scale motions (VLSMs) based on the bimodal distributions 
in the energy spectra. Rosenberg et al. (2013) observed 
traces of short and long wavelength peaks in turbulent pipe 
flows over a range of Reynolds numbers. Note that the 
presence of the long wavelength peak in the experimental 
studies, however, has been suspected to correspond to the 
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artifact of Taylor`s hypothesis (del Álamo & Jiménez 2009). 
In the energy spectra of high Reynolds number, 
furthermore, show the kx

–1 region, which is attributed to 
the attached eddy hypothesis (Perry et al. 1986). Nickels et 
al. (2005) and Rosenberg et al. (2013) respectively 
observed the kx

–1 region in turbulent boundary layer 
(TBL) at Reτ = 14380 and turbulent pipe flow at Reτ = 
3334; however, Morrison et al. (2002) could not identify the 
kx

–1 region in the turbulent pipe flows at Reτ = 1500 and 
100000. Those features in the energy spectra are necessary 
to be confirmed by DNS without any assumption or logical 
contradiction.  

The present study examines the DNS of a turbulent pipe 
flow at Reτ = 3008, which becomes the highest Reynolds 
number in DNS of turbulent pipe flow, to explore the issues 
raised among high-Reynolds-number turbulent flows. The 
axial domain length is 30R, which is long enough to 
capture the large- and very-large-scale motions (LSMs and 
VLSMs). The streamwise mean velocity in the overlap 
region is observed with the power law based on the 
indicator function. The contributions of the LSMs and the 
small-scale motions (SSMs) on the Reynolds shear stress 
and the mean velocity are evaluated. In addition, the pre-
multiplied streamwise energy spectra of the streamwise 
velocity fluctuations are examined with the bimodal 
distribution and the kx

-1 region with different-scaled 
turbulent structures. 
 
 
NUMERICAL METHOD 

The Navier-Stokes and continuity equations in 
cylindrical coordinates are employed to describe an 
incompressible and fully developed turbulent pipe flow 30R 
in length. The centerline velocity (Uc) and the pipe radius 
(R) are used to non-dimensionalize the equations. The 
governing equations are temporally discretized using the 
Crank-Nicolson scheme and are spatially resolved using the 
second-order central difference scheme with a staggered 
grid. The velocity and pressure are decoupled using the 
fully implicit fractional step method (Kim et al. 2002). No-
slip conditions at the wall and periodic boundary conditions 
along the streamwise and azimuthal directions are employed. 
For convenience and for comparison with other geometries, 
the cylindrical coordinates are transformed to Cartesian 
coordinates (Monty et al. 2009). The time- and spatial-
averaged quantities of the mean velocity and the velocity 
fluctuations are expressed using a capital letter or bracket 
(e.g., U or 〈u’〉). A detailed description of the numerical 
simulation can be found in Ahn et al. (2013). 

The Reynolds number, calculated based on the pipe 
diameter (D) and the bulk velocity (Ub), is ReD (≡ DUb/ν) = 
133000, and the Kármán number is Reτ = 3008. The 
statistics are averaged over sampling times of 600R/Uc, 
which allows a particle to travel 10 times down the axial 
domain length with the bulk velocity flow. A total of 12289 
× 901 × 3073 grid points are employed, yielding a 
resolution in physical space of Δx+ = 7.34 and Δz+ = 6.15. A 
resolution along the wall-normal direction is Δy+

min = 0.36 
and Δy+

max = 9.91. For the stable simulation, temporal 
resolution ΔtUc/R = 0.003 is adopted. A hybrid technique, a 
combination of OpenMP (Open Multi-Processing) and MPI 

(Message Passing Interface), is introduced to enhance the 
computational performance and to handle the massive 
memory. The simulations are performed using 4906 parallel 
cores (Intel Xeon X5570 2.93GHz) in the KISTI 
Supercomputing Center. 

Figure 1 shows the numerical and experimental profiles 
of the streamwise mean velocity and the streamwise 
Reynolds stress in the turbulent pipe flows for validating the 
present results. The DNS data at Reτ = 1142 (Wu & Moin 
2008) and the experimental data at Reτ ≈ 3000 (Monty et al. 
2009) are included. The present mean velocity profile shows 
a similar trend with other data. The profiles of the 
streamwise Reynolds stress are in good agreement with that 
of Wu & Moin (2008) near the wall, and the difference 
along the wall-normal direction are shown due to the high 
Reynolds number. However, the experimental streamwise 
Reynolds stress (Monty et al. 2009) is scattered near the 
wall. Although the hot-wire resolution (l+ = lu τ/ν, where l is 
the hot-wire length) is small as l+ = 30, it is possible to 
produce an attenuation of the small-scale structures (Chin et 
al. 2011). 
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Figure 1: Profiles of the streamwise mean velocity and the 
streamwise Reynolds stresses. The hollow and solid 
symbols indicate the streamwise mean velocity and the 
streamwise Reynolds stress, respectively.  
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Figure 2: The streamwise mean velocity with the power and 
log laws. 

 
The streamwise mean velocity is magnified along the 

buffer and overlap regions y+ = 10 – 1000 in figure 2 with 
the power and log laws: 

   ( )Power law: ,U C y
γ+ +=             (1) 

( )1Log law: log .U y Bκ+ − += +          (2) 

The power law well follows the present mean velocity in 
the range of y+ = 60 – 600 (y/R = 0.02 – 0.2), whereas the 
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log law matches the mean velociy only over the short 
range of y+ = 40 – 150 (y/R = 0.013 – 0.05), both within a 
0.5% tolerance. The coefficients of each law are obtained 
from the indicator functions in figure 3. Note that 
according to the suggestion of Marusic et al. (2013), the 
log region is predicted as 164 < y+ < 451 (3(Re τ)1/2 < y+ <  
0.15Re τ) for the present Reynolds number; however it 
locates higher than the present log region due to the higher 
Reynolds numbers employed in their experimental study. 
The present power law coefficients (C = 8.46, γ = 0.145) 
are almost the same as those (C = 8.48, γ = 0.142 at Re τ > 
5000) reported by McKeon et al. (2004), indicating that 
the coefficients are independent of the Reynolds numbers. 
The satisfaction of the power law implies that the viscous 
effects of the wall remained in the overlap region 
(Barenblett 1993). Therefore, the power law behavior in 
the present pipe flow at Re τ = 3008 could be interpreted as 
the widely spread viscous effect along the wall-normal 
direction. 
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Figure 3: The power law and log law indicator functions. 

 
Suitability of the power and log laws is evaluated by 

each indicator function according to:  

Power law indicator function : ,y U
U y

γ
+ +

+ +

∂
=

∂
      (3) 

1Log law indicator function : .Uy
y κ

+
+

+

∂
=

∂
      (4) 

The indicator functions are alternative forms of the mean 
velocity to show the satisfaction of each law. The indicator 
function implies that if a law is satisfied in a specific region, 
then there apears a constant in that region. Figure 3 shows 
the profiles of the indicator functions, including the DNS 
data obtained at Reτ = 934 (Ahn et al. 2013) for comparison 
of Reynolds numbers. The profiles of the power law 
indictor function at two Reynolds numbers collapse up to y+ 
≈ 100. As increasing the Reynolds number, the profiles 
descend in the overlap region, and finally the curve 
corresponding to Reτ = 3008 reaches a plateau (γ = 0.145) 
over the range y+ ≈ 90 – 300 (y/R = 0.1). The profiles of the 
log law indicator function exhibit qualitatively consistent 
behaviors up to y+ ≈ 60 with a local minimum of 2.387 (= 
1/κ, κ = 0.419), which is very similar to 0.421 ± 0.002 found 
by McKeon et al. (2004). Note that the power and log 
regions from the indicator functions are more accurate than 
the observed regions in figure 2(b) because the effects of the 
plateau region or local minimum in the indicator functions 
make the visible wall-normal regions be stretched. Unlike 
the power law indicator function, no flat region but only 
local minimum region is observed in the log law indicator 
function. The absence of a flat region has been observed in 

previous DNS studies up to Reτ ≈ 2000  (Wu & Moin 2008; 
Ahn et al. 2013; Chin et al. 2014a). McKeon et al. (2004) 
stated that a log law emerged as the Reynolds number 
increased (Reτ > 5000) although they did not examine the 
log law indicator function. The present investigation of the 
indicator functions, therefore, provides clear evidence that 
the present mean velocity follows the power law in the 
overlap region at the present Reynolds number (Reτ = 3008). 
Note that previous numerical and experimental studies of 
turbulent channel flows at Reτ ≈ 900 – 3000 suggested the 
universal log law in the mean velocity, although a clear 
plateau was not observed in the log law indicator function 
(Hoyas & Jiménez 2006; Monty et al. 2009).  
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Figure 4: Scale-separated Reynolds shear strss of turbulent 
pipe flows at Reτ = 3008 and 934 and turbulent channel 
flow at Reτ = 930.  

 
Absence of the log law is coincident to lack of the 

constant-stress layer, which continues the presence of the 
power law. Townsend (1976) derived the log law based on a 
constant-stress layer under the assumption of an infinite 
Reynolds number. The constant-stress layer indicates that 
the Reynolds shear stress is nearly independent of the 
distance from the wall. Although the present Reynolds 
number Reτ = 3008 is not infinitely high, it is meaningful to 
investigate the scale-dependent influences on the Reynolds 
shear stress by using wavelength decomposition. To 
demarcate the LSMs and SSMs, a cutoff wavelength λx

+ = 
3000, where λx is a streamwise wavelength, proposed by 
Chin et al. (2014b), is employed. Here, the LSMs 
encompass the VLSMs, i.e., LSMs = LSMs + VLSMs. The 
same procedure to Chin et al. (2014b) is applied to the DNS 
data of pipe flow at Reτ = 934 (Ahn et al. 2013) and 3008, 
as shown in figure 4. It shows that the profiles of the SSMs 
are similar regardless of the Reynolds numbers, implying 
that the employed cutoff wavelength is appropriate. On the 
other hand, the LSMs increase in the outer region with 
increasing the Reynolds numbers. This suggests that in total 
Reynolds shear stress, the LSMs are more responsible to 
maintain the constant stress in the overlap region than the 
SSMs. Note that the wall-normal range of 1% tolerance of 
the maximum Reynolds shear stress (0.94165) is distributed 
along y+ = 50 – 140, which is similar to the log region found 
in figure 2. We, therefore, conjecture that if the Reynolds 
number are increased further, the LSMs becomes more 
enhanced and the constant-stress layer would appear. 

3 
 



The geomeric difference of the scale-separated 
Reynolds shear stress is examined with the pipe and channel 
flows at Reτ ≈ 930 (Ahn et al. 2013; Lee et al. 2014) in 
figure 4. The magnitude of the Reynolds shear stress 
associated with the LSMs in the overlap and core regions of 
the pipe flow is smaller than the magnitude in the channel 
flow (y+ ≥ 50). The contribution of the LSMs to the 
Reynolds shear stress is larger in the channel flow than in 
the pipe flow, even though the total Reynolds shear stresses 
are nearly equivalent. Note that the contributions of the 
SSMs in the outer region differ from the contributions of the 
LSMs toward the total Reynolds shear stresses in both flows. 
These different statistical behaviors of the LSMs come from 
the different geometries, which might determine the 
development speed of the mean velocity.  

The structural differences between the pipe and channel 
flows probably result in different power and log laws that 
apply in the overlap region. Because the LSMs in the pipe 
flow decays more rapidly than in the channel flow due to 
space limitations in the core region, the LSMs in the pipe 
flow are more restricted to be developed than those in the 
channel flow. Lee et al. (2015) found that the survival time 
of the LSMs was shorter in the pipe flow than in the channel 
flow. Because the LSMs are more highly populated in the 
channel flow than in the pipe flow (Lee et al. 2015), the 
highly active LSMs in the channel flow contribute to the log 
law in the mean velocity with a greater extent than they did 
in the pipe flow. 
 
 
ENERGY SPECTRA 

Figure 5 shows the one-dimensional (1-D) pre-
multiplied streamwise spectra of the streamwise velocity 
fluctuations in y/R ≤ 0.1 along the outer coordinate. The 
profiles at y+ = 90 – 300 agree well over the wavelengths 
λx/R = 2 – 5, creating a plateau. Note that these wavelength 
ranges are in accordance with λx/y = 18 – 160, expressed by 
the inner coordinate. For example, the curve at y+ = 90 
induces a plateau for λx/y = 70 – 160, and the curve at y+ = 
300 induces a plateau for λx/y = 18 – 50. These flat regions 
are called the kx

-1 region, where kx is a wavenumber (Perry 
et al. 1986). Nickels et al. (2005) and Rosenberg et al. 
(2013) oberved the kx

-1 region in TBL (Reτ = 14380) and 
turbulent pipe flow (Reτ = 3334) at y+ ≥ 100. It is 
remarkable to note that in turbulent pipe flow at higher 
Reynolds numbers, Rosenberg et al. (2013) did not found 
the kx

-1 region, and instead the logarithmic correction of the 
kx

-1 region was observed; however since the nearest wall-
normal location for the measurement was y+ ≈ 400, the kx

-1 
region would appear at y+ ≈ 100. 

The existence of the kx
-1 region supports the attached 

eddy hypothesis (Perry et al. 1986). Attached eddies are 
energy-containing motions and are proportional in size to 
the distance between their centers and the wall, i.e., attached 
to the wall (Townsend 1976). Nickels et al. (2007) revealed 
that the log law did not readily describe the mean velocity 
without employing the attached eddy hypothesis. 
Similarities, therefore, could be achieved by satisfying both 
the kx

–1 region and the log law. A state, in which both the 
kx

–1 region in the wavenumber space and the log law in the 
physical space are satisfied, is termed complete similarity, 
free from viscous effects (Townsend 1976). The beginning 

and ending locations of the kx
–1 region, y+ = 90 and 300, 

however, are almost equivalent to the power region from the 
power law indicator function in figure 3, which implies 
incomplete similarity (Morrison et al. 2002). Because the 
mean velocity follows the power law, the viscous effects 
persist in the physical overlap region, although the kx

–1 
region appears without the viscous effects in the spectra. 
Note that it is widely accepted that the log law is satisfied 
with extremely high Reynolds numbers. In this reason, it is 
proposed that as increasing Reynolds numbers, the 
similarity is firstly achieved in the wavenumber space with 
the kx

-1 region and then satisfies with the log law in the 
physical domain.  
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Figure 5: 1-D pre-multiplied streamwise spectra of the 
streamwise velocity fluctuations at y+ = 90 – 300 with the 
interval of Δy+ = 30 along the outer coordinate. The grey 
band represents the wavelength range 10 < λx/R < 15. 

 
Another interesting observation of the bimodal 

distributions is shown in figure 5. There are clear two peaks 
of the SSMs or LSMs and the VLSMs. The short 
wavelength spectral peaks of the SSMs or LSMs grow with 
increasing the wall-normal distance up to λx/R = 3. A long 
wavelength spectral peaks of the VLSMs are observed for 
λx/R = 10 – 15, depicted by the grey band. Note that 
because the grid system employed here permits the 
streamwise wavelengths up to 30/n (n is an integer between 
1 and Nx/2, where Nx is the number of the grid along the 
streamwise direction), the wavelengths of the VLSMs are 
only 15R, 10R, and so on, creating large variations in the 
long wavelengths shown in figure 6. Even though there are 
discrete gaps in long wavelengths, the overall spectral 
shapes, however, are not affected. The long wavelength 
spectral peak does not surpass the peak at short wavelength 
spectra peak. It is different from other experimental results 
(e.g. Monty et al. 2009), which comes from the 
overestimated energy of the VLSMs due to the usage of 
Taylor`s hypothesis (del Álamo & Jiménez 2009). The long 
wavelength energy at λx/R = 10 – 15 increases as the wall-
normal distance increases although there is a deep valley at 
λx/R = 7.5. It seems that the deep valley passively occurs 
due to the sudden increase associated with the energy of the 
VLSMs. This sudden energy increase at long wavelengths is 
not observed in the low-Reynolds number pipe flows (Ahn 
et al. 2013; Chin et al. 2014a).  

Figure 6 shows a two-dimensional (2-D) contour map of 
kxΦuu

+. There is an obvious inner site at y+ = 13 with λx
+ = 

800 due to the self-sustaining near-wall cycle (Hutchins & 
Marusic 2007). In the overlap region, an outer site is also 
shown at y/R = 0.087 with λx/R = 10, which has been firstly 
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observed in the DNS of turbulent pipe flow. The presence of 
an outer site has been reported in many experiments as 
resulting from the activation of VLSMs (Hutchins & 
Marusic 2007; Monty et al. 2009; Rosenberg et al. 2013). 
The short wavelength spectral peaks along the wall-normal 
location are detected in the 1-D energy profiles, and they 
compose of the linear trend, λx/R = 20y/R (white dashed 
line). The small-scale energies near the wall grow into the 
outer-layer large-scale energies followed by the linear 
fashion. The linear growth of the structures is closely 
associated with the kx

–1 region denoted by the black solid 
box (λx/R = 2 – 5 with y+ = 90 – 300). At low Reynolds 
numbers, the kx

-1 region does not exist (Ahn et al. 2013; 
Chin et al. 2014a); however, as the Reynolds number 
increases, the linear growth of energy between the inner and 
outer regions becomes active, and therefore, it is supposed 
that the active energy transfer helps to form the kx

-1 region.  
 

 
Figure 6: 2-D contour of the pre-multiplied streamwise 
energy spectra corresponding to the streamwise velocity 
fluctuations. The black solid box indicates the kx

–1 region 
(y+ = 90 – 300 with λx/R = 2 – 5). The white dashed line 
indicates the linear growth of λx/R = 20y/R. The cross 
symbols represent the inner and outer sites at y+ = 13 with 
λx

+ = 800 and y/R = 0.087 with λx/R = 10, respectively. 
 
On the other hand, the energies of the VLSMs in the 

outer region are isolated from those of the SSMs and LSMs. 
As shown in figures 5, the energies of the VLSMs occurs at 
λx/R = 10 − 15 regardless of the wall-normal locations. This 
indicates that the VLSMs do not grow linearly with the 
wall-normal distance but exist with the fixed wavelengths; 
i.e., the VLSMs are not the attached eddies. In the energy 
sense, the SSMs and LSMs do not contribute to the 
formation of the VLSMs. Since the energy growth from the 
SSMs to LSMs becomes populated as increasing the 
Reynolds number, this energy transfer produces the large 
population of LSMs, and the generated adjacent LSMs 
result in the continuous concatenation along the streamwise 
direction, i.e., the VLSMs (Kim & Adrian 1999; Lee et al. 
2014). In consequense, increasing the Reynolds number 
could produce the isolated energy peak of the VLSMs at 
long wavelengths. As the Reynolds number increases 
further, the energies associated with the VLSMs increase 
even more significantly. The deep valley shown in figures 5 
and 6 would be filled with the large energies of the VLSMs 
at high Reynolds numbers.  

 
 

CONCLUSIONS 

A DNS of turbulent pipe flows is performed at a high 
Reynolds number, Reτ = 3008. A long streamwise domain 
length of 30R is adopted to avoid the numerical artifact in 
high-order statistics. The streamwise mean velocity is found 
to follow the power law at y+ = 90 – 300, as validated by the 
indicator function. The scale-separated Reynolds shear 
stress reveals that the presence of the constant-stress layer is 
more determined by the LSMs than the SSMs because the 
LSMs occupy more in the outer region than the SSMs. 
Because the LSMs are more populated in the channel flow 
than in the pipe flow, more active LSMs in the channel flow 
contribute to the constant-stress layer, continuing to the log 
law in the mean velocity, than they do in the pipe flow.The 
pre-multiplied streamwise spectra of the streamwise 
velocity fluctuations reveals the kx

–1 region for λx/R = 2 – 5 
at the same wall-normal region of the power law. Linear 
growth of λx/R = 20y/R, from the small-scale to large-scale 
energies, develops the attached eddies, which form the kx

-1 
region. The bimodal distribution with the spectral peaks of 
the LSMs and VLSMs is observed. The corresponding inner 
and outer site in the 2-D map of the energy spectra are 
located at y+ = 13 with λx

+ = 800 and y/R = 0.087 with λx/R 
= 10. 
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