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ABSTRACT
We conducted a set of large scale DNS of turbulent Couette

flow with the two key objectives to better understand large scale
coherent structures and to validate new Lie symmetry based tur-
bulent scaling laws for the mean velocity and the second order
moments.

Direct Numerical Simulation
In this work, a new set of DNSs of a plane turbulent Cou-

ette flow has been performed for Reynolds numbers Reτ =
125, 180, 250 and 550, based on the friction velocity uτ and on
the channel half-width h. Very large computational boxes with
variable stream-wise box-length, with Lx = lg · 20πh, Ly = 2h
and Lz = 6πh. The flow is periodic in spanwise and streamwise
direction. The Lx-parameter lg = 2l is given in the subsequent
table.

Reτ l = 0 l = 1 l = 2 l = 3
125 x x x x
180 x x x x
250 x x x
550 x

The simulations for the low Re numbers are thus comparable to
other, most recent simulations made by Bernardini et al. (2013),
Tsukahara et al. (2006) and the Poiseuille flow at Reτ = 550
of Jiménez’s group (del Álamo & Jiménez, 2003; Jimenez &
Hoyas, 2008). A very recent article about this topic is Pirozzoli
et al. (2014), where the authors analyze a simulation at Reτ =
1000 in a 18πh long box.

The code used here was validated in Avsarkisov et al.
(2014). The numerical scheme is similar to the one used by Kim
et al. (1987) and Hoyas & Jimenez (2006). The streamwise,
wall-normal, spanwise velocity components are u,v andw. The
governing equations of the system are transformed into an equa-
tion for wall-normal vorticity ωy and for the Laplacian of the
wall-normal velocity φ = ∇2v. The spatial discretization uses
dealiased Fourier expansions in x and z, and seven-point com-
pact finite differences in y, with fourth-order consistency and
extended spectral-like resolution (Lele, 1992). The wall-normal
grid spacing is adjusted to keep the resolution, ∆y = 1.5η , ap-
proximately constant in terms of the local isotropic Kolmogorov
scale η = (ν3/ε)1/4 for the Reτ = 550 case. In wall units, ∆y+

varies from 0.92 at the wall up to ∆y+ ' 5.9 at the centerline.
In order to facilitate the comparison of structures in outer vari-
ables we used the same grid in wall-normal direction for all
Reτ = 180−550 cases. Resolution in x and z is similar to well
established simulations of Hoyas & Jimenez (2006), and are ap-
proximately x+ = 8 and z+ = 4. The temporal discretization is a
third-order semi-implicit Runge-Kutta scheme (Spalart, 1991).
Initial fields for the Reτ = 125 case were taken from previously
calculated Poiseuille flows, imposing the new boundary condi-
tions. Initial fields for the rest of the cases were obtained a) in-
creasing the Reτ or b) interpolating the results of shorter boxes
to larger ones.

In order to analyze the inverse of the Kármán constant the
log-indicator function y∂yU+ has been plotted in figure 1a and
1b for the 180 and 250 cases. All curves collapse well up to
their first minimum, at y+ ' 60 (not shown). As was suggested
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Figure 1: Log-indicator function, (a, b) inverse Kármán
constant for (a) Reτ = 180 and (b) Reτ = 250 in outer
units. The symbols used are: ♦ for lx = 20πh, � for
lx = 40πh, ◦ for lx = 80πh and M for lx = 160πh.

in Hoyas & Jimenez (2006) this value can be taken as a lower
limit for the logarithmic layer. The curve in the log-indicator
function becomes flatter as we increase the length of the box up
to lx = 80πh. Since h and UW are the same for all the simula-
tions, we can employ figure 1 to analyze values of the slope pa-
rameter Ψ = h

UW

dU
dy

∣∣∣
CL

. Similarly to the log-indicator function
it decreases with increasing box length. However, this changes
dramatically for the largest box (lx = 160πh) in figure 1. The
flatter profile is lost, and the slope parameter increase, almost
doubling its value. This may be an indication that the large
structures described in the next section greatly affect the flow
and that very large boxes are thus needed to describe it.

Large scale coherent structures
From a theoretical point of view the turbulent plane

Couette flow is ideal for fundamental investigations on wall-
turbulence as it features the convenient property of a constant
shear stress across the entire channel height. However, unlike
the Poiseuille flow, it is considerably less studied. The main
reason for that lies in very large scale structures that are formed
in the core region of the plane Couette flow (see e.g. Kitoh &
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Figure 2: Pre-multiplied spectra at y+ ≈ 15 for the Reτ = 125 case simulated in four different boxes: (a) lx = 20πh; (b)
lx = 40πh; (c) lx = 80πh; (d) lx = 160πh.
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Figure 3: Coherent structures obtained from the ensemble average of the flow field spanning through all the channel
and isosurfaces of 10% of the maximum vorticity in spanwise direction at Reτ = 125.

Umeki, 2008; Tsukahara et al., 2006; Pirozzoli et al., 2011;
Bernardini et al., 2013). The necessity of the large numeri-
cal boxes to capture these structures makes a numerical study
of the plane Couette flow much more computationally expen-
sive than turbulent Poiseuille flow. The footprint of these struc-
tures can be appreciated in the pre-multiplied spectra (Hoyas
& Jimenez, 2006; Hoyas & Jiménez, 2008). The spectra for

the Reτ = 125 case is plotted in figure 2 for the four boxes.
This figure shows the classical spectra at x+ = 15 except for
the region at the top-right corner. This part of the spectrum
shows that there exist a significant amount of energy on very
long and wide scales even in the buffer layer of the flow. Since
these structures remain in the flow for a long time their form can
be recovered by an ensemble averaging in time, where x1− x3
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Figure 4: Two-point autocorrelation coefficient Ruu of velocity fluctuations at the centerline, y/h= 0.5. (a) Streamwise,
(b) Spanwise. Circles from Tsukahara et al. (2006). M simulations at Reτ = 125, (20πh×2h×12πh); O, Reτ = 125,
(40πh×2h×6πh). The lines are as given in figure 6.

plane averaging has been deactivated. Using such technique we
found that the longest structures of the flow appear organized in
counter-rotating pairs of rolls with high vorticity at their bound-
aries. An example of such structures obtained from our DNS
at Reτ = 125 can be taken from figure 3, where we have iso-
lated a pair of counter-rotating rolls. The position of these vor-
tices in the channel is shown in the upper right corner of fig-
ure 3. This subplot shows the velocity assembled average of
ten turnovers of the simulation. These structures seems to be
responsible for the long correlation length observed for Cou-
ette flows. The two-point autocorrelation coefficient Ruu(∆z), is
shown in figure 4b. The maxima are all at the same point for all
Reynolds numbers studied when Lz = 6πh. Although it can be
seen that the intensity of the autocorrelation Ruu(∆z) is consid-
erably reduced after 10∆z/h, it still presents a clear sinusoidal
pattern, with a distance between extrema of around 1.6πh, i.e.,
0.8πh per structure. This size agrees with those given by other
authors, e.g. Tsukahara et al. (2006). In the present simula-
tions the autocorrelation coefficient Ruu(∆x) does not present
a secondary extremum below 60h, as it is shown in figure 4a.
An exception is the Reτ = 125 case, which exhibits an explicit
minimum. Thus, in order to capture the longest structures in the
higher Reynolds numbers simulations the size of the box must
be much larger.

As may be taken from figure 5, the off-wall peak of the
streamwise vorticity fluctuation ω ′+x , which is an indicator for
the quasi-streamwise vortices (Jiménez & Pinelli, 1999), is lo-
cated in the same region as in a pressure-driven channel flow.
However, unlike the latter case, here we see the collapse of
the vorticity fluctuations profiles from y+ = 10 towards the
channel center. It is well known that in the buffer layer, ω ′+y
has a maximum peak that indicates the existence of velocity
streaks. In fact, the location of this peak represents the maxi-
mum streak velocity, which is located at y+ ∼ 15 in canonical
channel flow. The collapse of the wall-normal vorticity fluc-
tuations at different turbulent Reynolds numbers, suggests an
invariance of the low-speed streak spacing in wall units (Moser
et al., 1999). Similarly to streamwise component, the collapse
of spanwise vorticity fluctuation ω ′+z profiles occurs beginning
with y+ = 10. An almost perfect collapse of all RMS vorticity
components in the buffer region of the plane turbulent Couette
flow up to Reτ = 550 implies the presence of the large scale co-
herent structures in this region which was discussed above. It
also suggests that these structures may significantly affect near-
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Figure 5: RMS streamwise ( ), wall-normal ( – – ) and
spanwise ( ) vorticity profiles in wall coordinates.
Profiles for four Reynolds numbers: Reτ = 125 (blue),
Reτ = 180 (green), Reτ = 250 (red) and Reτ = 550
(black) are taken from Avsarkisov et al. (2014).

wall velocity streaks, quasi-streamwise vortices, ejection and
sweep events and consequently the near-wall regeneration cy-
cle.

New symmetries of the correlation equations
Presently, any symmetry we are referring to is a Lie

symmetry group which constitutes a transformation that maps
equations to itself such as the scaling group t∗ = e2at, x∗ =
eax,T ∗ = T maps the heat equation Tt = Txx to itself i.e. T ∗t∗ =
T ∗x∗x∗ . Apart from deep understanding of the underlaying
physics the key properties of Lie symmetries is that they form
the basis for constructing invariant solutions, in fluid mechan-
ics often referred to similarity solution if a scaling symmetry
is involved. An elementary introduction to the theory of Lie
symmetries is given in Hydon (2000).

In order to comprehend the scaling behavior of the mean
velocity and higher order correlations of a turbulent Couette we
may start with the multi-point correlation equation and its sym-
metries. Rather different to the classical approach of correlation
functions, which is based on the fluctuating values of velocity
and pressure, ui and p, we presently employ the instantaneous
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values Ui and P for the correlation. For this we define

Hi{n+1} = Hi(0)i(1)...i(n) =Ui(0)(x(0), t) · . . . ·Ui(n)(x(n), t) , (1)

where the index i of the farthermost left quantity refers to its ten-
sor character, while its superscript in curly brackets denotes the
tensor order. The mean velocity is given by the first order ten-
sor as Hi{1} = Hi(0) = Ūi. Using (1) and employing the Navier-
Stokes equation we derive the multi-point correlation equation

Si{n+1} =
∂Hi{n+1}

∂ t
+

n

∑
l=0

[
∂Hi{n+2}[i(n+1) 7→k(l)][x(n+1) 7→ x(l)]

∂xk(l)

+
∂ Ii{n}[l]

∂xi(l)
−ν

∂ 2Hi{n+1}

∂xk(l)∂xk(l)

]
= 0 for n = 1, . . . ,∞ . (2)

where we need to further define

Hi{n+2}[i(n+1) 7→k(l)][x(n+1) 7→ x(l)] =

Ui(0)(x(0), t) · . . . ·Ui(n)(x(n), t)Uk(l)(x(l), t) , (3)

and

Ii{n}[l] =Ui(0)(x(0), t) · . . . ·P(x(l), t) · . . . ·Ui(n)(x(n), t) . (4)

Equation (2) may finally completed by continuity equations for
all correlations (Rosteck, 2014) which are not shown here.

Investigating this system with respect to its symmetries we
naturally observe that it admits all symmetries of Navier-Stokes
equations, i.e. the Galilean group plus some scaling symmetries
(see e.g. Rosteck, 2014). Here we will only give the two scaling
groups needed below, which in the limit of vanishing viscosity
read

Ts1 : t∗ = t, x ∗ = ea1x , r( j)∗ = ea1r( j),

H∗i{n} = ena1 Hi{n} , I∗i{n} = e(n+2)a1 Ii{n} , (5)

referring to scaling of space, while scaling of time reads

Ts2 : t∗ = ea2 t, x ∗ = x , r( j)∗ = r( j),

H∗i{n} = e−na2 Hi{n} , I∗i{n} = e−(n+2)a2 Ii{n} . (6)

Most important, however, the system (1) admits additional sym-
metries, of purely statistical nature. They were first recognized
in Oberlack & Rosteck (2010) and significantly extended in
Rosteck (2014).

These symmetries for the H-I-system (2) can be separated
into three distinct and generic sets of symmetries

T̄ ′1 : t∗ = t, x ∗ = x , r∗(l) = r(l)+a(l),

H∗{n} =H{n}, I
∗
{n} = I{n}, (7)

T̄ ′2{n} : t∗ = t, x ∗ = x , r∗(l) = r(l),

H∗{n} =H{n}+C{n}, I
∗
{n} = I{n}+D{n}, (8)

T̄ ′s : t∗ = t, x ∗ = x , r∗(l) = r(l),

H∗{n} = eksH{n}, I
∗
{n} = eks I{n}. (9)

all of which are of purely statistical nature. In the specific case
of turbulent parallel shear flows, where x2 is the wall-normal co-
ordinate, an additional set of symmetries is admitted (see Ros-
teck, 2014) given by

T̄ ′z{n} : t∗ = t, x∗2 = x2, r
∗
(l) = r(l),

H∗{n} =H{n}+A{n}x2, I
∗
{n} = I{n}. (10)

For the derivation of the symmetries (7), (8), (9) it was crucial
to use the form (2) while in the following we concentrate on
two-point correlations and Reynolds stresses which are based
on fluctuations ui and p.

In order to use the aforementioned symmetries for con-
structing invariant solutions and, finally, compare it to corre-
lations such as the Reynolds stress tensor, we may employ
Reynolds decomposition Ui = Ūi + ui and P = P̄+ p to derive
relations between the classical and above definitions of correla-
tions

Hi(0) = Ūi(0) , (11)

Hi(0)i(1) = Ūi(0)Ūi(1) +Ri(0)i(1) , (12)

Hi(0)i(1)i(2) = Ūi(0)Ūi(1)Ūi(2) +Ri(0)i(1)Ūi(2)

+ Ri(0)i(2)Ūi(1) +Ri(1)i(2)Ūi(0) +Ri(0)i(1)i(2) (13)

where the Reynolds stress tensor uiu j(x ) and the two-point cor-
relation tensor Ri j(x ,r)= ui(x )u j(x +r) are connected by the
relation uiu j(x ) = limr→0 Ri j(x ,r) and Ūi is the mean veloc-
ity. With this the Reynolds averaged Navier-Stokes equation

D̄Ūi

D̄t
=− ∂ P̄

∂xi
+ν

∂ 2Ūi

∂xk∂xk
− ∂uiuk

∂xk
, i = 1,2,3, (14)

and the two-point correlation equation read

D̄Ri j

D̄t
+Rk j

∂Ūi(x , t)
∂xk

+Rik
∂Ū j(x , t)

∂xk

∣∣∣∣
x+r

+[Ūk (x +r , t)−Ūk (x , t)]
∂Ri j

∂ rk
+

∂ pu j

∂xi
−

∂ pu j

∂ ri
+

∂ui p
∂ r j

−ν

[
∂ 2Ri j

∂xk∂xk
−2

∂ 2Ri j

∂xk∂ rk
+2

∂ 2Ri j

∂ rk∂ rk

]

+
∂R(ik) j

∂xk
− ∂

∂ rk

[
R(ik) j−Ri( jk)

]
= 0 . (15)

Using (11)-(13), the statistical symmetries (7)-(10) may be re-
written for the one-point quantities Ūi and uiu j. From (9) we
find

T̄ ′s : t∗ = t, x ∗ = x , Ū∗i = easŪi,

uiu j
∗ = eas

[
uiu j +(1− eas)ŪiŪ j

]
, · · · . (16)

where the first two of an infinite row of symmetries (8) are given
by

T̄ ′2{1} : t∗ = t, x ∗ = x , Ū∗i = Ūi +Ci,

uiu j
∗ = uiu j +ŪiŪ j− (Ūi +Ci)

(
Ū j +C j

)
, · · · (17)
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Figure 6: (a) Mean velocity profile scaled in outer (top-
left, UW ,h) and inner (bottom-right, uτ ,y+) scales. Cir-
cles from Tsukahara et al. (2006); squares from Bernar-
dini et al. (2013). Blue solid line corresponds to viscous
sublayer linear scaling law; red solid line represents near-
wall classical log-law. (b) Mean velocity profiles in ve-
locity deficit form normalized on uτ . , profile (23).
The simulations at Reτ = 125 · · · · · · ; Reτ = 180 – – – –;
Reτ = 250 —·— and Reτ = 550 —— are taken from
Avsarkisov et al. (2014).

and

T̄ ′2{2} : t∗ = t, x ∗ = x , Ū∗i = Ūi,

uiu j
∗ = uiu j +Ci j, · · · . (18)

where in the above groups as, Ci and Ci j are group parameter.
Finally, (10) may reformulated accordingly such that for

the mean velocity it has the form

T̄ ′z{1} : x∗2 = x2, Ū∗1 = Ū1 +b1x2, uiu j
∗ = uiu j, · · · (19)

while for the stresses we similarly obtain

T̄ ′z{2} : x∗2 = x2, Ū∗1 = Ū1, uiu j
∗ = uiu j +bi jx2, . · · · . (20)

Though Rosteck (2014) showed that (10), or more precisely
(20), plays an important role for the second moments scaling

laws for various shear flow, including the present one as it may
be also taken from figure 7, so far data never substantiated (19)
for the mean velocity of any wall-bounded shear.

However, with the present large scale DNS of the turbulent
Couette flow (19) can clearly be validated and is part of a new
Couette flow scaling law to be shown in (23).

Group invariant solutions
From the set of all symmetries given above me may now

construct invariant solutions which may be interpreted as tur-
bulent scaling laws. The group invariant solutions may only be
properly constructed from the infinitesimal form of the groups
(16)-(20) (see e.g. Hydon, 2000). For this it is important to note
that infinitesimals form a linear vector space and hence may be
combined linearly. Without giving details of its derivation we
present the invariant surface condition

dx2

a1x2 +a4
=

dŪ1

(a1−a2 +as)Ū1 +C1 +b1x2
=

dR11

ξR11

... (21)

where its integration defines the invariant solutions for the mo-
ments. Interesting enough, for the present case of a turbulent
Couette flow all symmetries appear to be active, i.e. all group
parameter in (21) are non-zero and lead to the group invariant
solution (23) for the mean velocity. Accordingly, this leads to
the second moments (24)/(25), while details are skipped.

Turbulent scaling laws
The mean velocity profiles are shown in figure 6a scaled

in outer and inner units. The new profiles agree well with the
simulations of Tsukahara et al. (2006) and Bernardini et al.
(2013) at Reτ = 125− 250. In figure 6a the log law U+ =
1/κ log(y+)+B has been plotted for κ = 0.41 and B= 5.1. Un-
like the results of Kitoh et al. (2005) and Tsukahara et al. (2006)
we do not see any dependency of B on the friction Reynolds
number in the range Reτ = 125− 550. This may be an indica-
tion that the Reynolds numbers used in the past were not not
sufficiently high to investigate the near-wall log-law. Based on
the present DNS data, the classical deficit law known for bound-
ary layer, plane and round Poiseuille flow has been extended to
plane Couette flow:

Ū1−UB

uτ
= f

(x2

h

)
, (22)

where the bulk velocity is defined as UB = 1
2h
∫ 2h

0 Ū1(x2)dx2 =
UW
2 and UW is the moving wall velocity. A nice validation com-

prising all our present DNS is given in figure 6b. The classical
Couette scaling is in clear contrast to (22), as it is based on a
normalization using UW instead of uτ . The determination of f
in (22) is done using the new symmetries above together with
the invariance condition (21).

The new symmetry (19) plays an important role for the
Couette flow as it has never been identified in any other tur-
bulent shear flow in Rosteck (2014), while for the Couette flow
we find b1 6= 0 . Omitting any details, the final formula for the
new scaling of the Couette flow has the following form

Ū1−Ub

uτ
= a

x2

h
+b
(x2

h

)n
. (23)

The latter is shown as solid line in figure 6b, where the values
have been determined to a = 3.046, b = 3.081 and n = 3.922.
It should be noted that it is in fact the linear part in (23) that

5



0 0.25 0.5 0.75 1
0

2

4

6

8

10

x2/h

u1u1
+

u3u3
+

u2u2
+

u1u2
+

(a)

0 0.25 0.5 0.75 1
0

2

4

6

8

10

x2/h

u1u1
+

u3u3
+

u2u2
+

u1u2
+

(b)

Figure 7: Turbulent shear stresses at (a) Reτ = 250; (b) Reτ = 550. •, u1u1
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corresponds to the above mentioned new symmetry (19) and,
most important, a very precise match of the data is impossible
without having this term non-zero.

The corresponding stresses read

Ri j−Rcl
i j

u2
τ

=Ci j

(x2

h

)m
for i j = 12,22,33 (24)

and

R11−Rcl
11

u2
τ

= b1

(x2

h

)2n
+b2

(x2

h

)n+1
+b3

(x2

h

)n

+b4

(x2

h

)2
+b5

(x2

h

)
+C11

(x2

h

)m
, (25)

where Rcl
i j are the centerline values and, for a given flow, values

for n and m are the same in (23)-(25).
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