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ABSTRACT
We study the late time dynamics of unstably strati-

fied homogeneous turbulence (USHT) accounting for in-
compressible binary mixture under Boussinesq approxima-
tion. In order to explore the high Reynolds number regimes
reached at long times, which cannot be represented in ei-
ther laboratory experiments or direct numerical simulations,
we use a spectral model based on the eddy damped quasi-
normal Markovian (EDQNM) closure. We focus in this
study on the dependence of the asymptotic regime on the
large scale distribution specified in initial conditions, speci-
fied by the powerlaw scaling of the infrared spectral range.
We are able to identify the various evolutions of kinetic en-
ergy corresponding to distinct self-similar states, character-
ized by the kinetic energy growth rate and the anisotropic
structures created in the flow. Our results agree with recent
theoretical predictions concerning USHT.

INTRODUCTION
The decay of homogeneous isotropic turbulence (HIT)

is perhaps one the most studied topic in turbulence. While
of fundamental importance, it is also the subject of in-
tense theoretical debates illustrated by the question of per-
manence of big eddies related to the existence of invari-
ants [Batchelor, 1953]. In situations where invariants exist,
with a mostly downscale energy cascade — i.e backscatter
terms are subdominant —, it is possible to relate the spectral
powerlaw of the infrared range in the energy spectrum to the
self-similar decay exponent of kinetic energy. This theoret-
ical prediction was confirmed by Lesieur & Ossia [2000]
using a spectral eddy damped quasi normal Markovian
(EDQNM) simulations at high Reynolds number. Soulard
et al. [2014] transposed these theoretical arguments to un-
stably stratified homogeneous turbulence (USHT) in order
to evaluate the asymptotic growth rate of kinetic energy at
sufficiently high Reynodlds number, therefore at long time.
This brings to the fore the determinant role of the distri-
bution of energy of the large-scale eddies, which, in spec-
tral terms, translates in the powerlaw scaling ks of the in-
frared range of kinetic energy spectrum E(k), i.e.. at small
wavenumbers k. One shows that the kinetic energy evolves
self-similarly at late time as K (t) ∼ eβNt , where N is the

buoyancy frequency computed from the mean vertical den-
sity gradient and to the intensity of gravity (similar to the
Brunt-Väisälä frequency in stably stratified flows). Using
some hypotheses, Soulard et al. [2014] show that the growth
rate β is related to the infrared slope as

β =
4

s+3
. (1)

However, it is hard to confirm these predictions as the
self-similar states of USHT are generally difficult to ob-
serve, due to a quickly increasing Reynolds number and
to the permanent growth of turbulence structures fed by
the buoyancy force. For instance, an important feature of
USHT is the growth of the integral length scale which,
at large time, generally induces confinement effects in ex-
periments [Thoroddsen et al., 1998] (due to the finite size
of the container) and in direct numerical simulations (due
to the periodicity of the domain in pseudo-spectral algo-
rithms) [Griffond et al., 2014]. In order to deal with this
issue, we propose to extend the approach of Lesieur & Ossia
[2000], for homogoeneous isotropic turbulence (HIT) mod-
elled with an EDQNM closure, to the case of USHT. How-
ever, USHT dynamics is more complex than HIT dynamics
since it is strongly anisotropic. This requires a significantly
extended anisotropic EDQNM model which, in this work,
follows the formalism introduced for axisymmetric turbu-
lence by Godeferd & Cambon [1994] (see also Sagaut &
Cambon [2008]). The EDQNM model dedicated to USHT
has been successfully compared to several direct numerical
simulations (DNS) at the available Reynolds numbers and
with different parameters such as initial conditions for mix-
ing intensity or strength of acceleration [Burlot et al., 2015].
By studying self-similar states of USHT, we expect to gain a
better insight into buoyancy induced turbulence which has
many practical applications such as Rayleigh-Taylor mix-
ing.

This article is organized as follows: first, we show the
basic equations for USHT and briefly present the key ele-
ments of the EDQNM model. Then, we describe the differ-
ent parametric simulations and discuss the characteristics of
the self-similar late time dynamics.
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BASIC EQUATIONS FOR UNSTABLY STRATI-
FIED HOMOGENEOUS TURBULENCE

The equations for unstably stratified flows derive from
incompressible Navier-Stokes equations with Boussinesq
assumption and express the dynamics of the fluctuating ve-
locity field u in absence of mean velocity and of the fluctu-
ating buoyancy field ϑ in presence of a vertical (along x3)
mean density gradient, as [Griffond et al., 2014]

∂ui

∂xi
= 0, (2)

∂ui

∂ t
+u j

∂ui

∂x j
=− 1

ρ0

∂ p
∂xi

+ν
∂ 2ui

∂x j∂x j
+Nϑδi3, (3)

∂ϑ
∂ t

+u j
∂ϑ
∂x j

= D
∂ 2ϑ

∂x j∂x j
+Nu3. (4)

p is the pressure, ρ0 a reference density, ν the kinematic vis-
cosity, D the diffusion coefficient for buoyancy ϑ rescaled
as a velocity. In practice, we restrict our study to unit
Prandtl number such that ν = D . The buoyancy frequency
N already introduced accounts for the strength of the ac-
celeration and the mean stratification of the fluid. We as-
sume here a uniform in space and constant in time N. The
larger N the stronger stratification and/or gravity acceler-
ation. Equation (2) states the incompressibility; Eqs. (3)
and Eq. (4) show that the dynamics of the velocity field of
the buoyancy field are coupled through two linear terms in-
volving the destabilizing buoyancy force ϑδi3 in Eq. (3),
and Nu3 in Eq. (4). Denoting the ensemble average 〈〉, ve-
locity and buoyancy are such that 〈ui〉 = 〈ϑ〉 = 0 and their
statistics are independent of the location in space from the
homogeneous assumption.

Inverting the direction for the mean density gradient
(i.e. replacing N by−N) in the USHT system permits to re-
cover the stably stratified homogeneous turbulence (SSHT)
case. First investigated by [Batchelor et al., 1992], the
unstable homogenenous case which we also consider here
leads to buoyancy-induced turbulence which has been the
subject of less studies than SSHT. USHT dynamics differs
from SSHT dynamics due to the effect of buoyancy fluctu-
ations steadily forced by N at all scales, which eventually
leads to an exponential growth of kinetic energy, when N
is constant. In Rayleigh-Taylor mixing, N varies slowly in
time and yields different energy growth laws.

Eddy damped quasi normal model for unsta-
bly stratified homogeneous turbulence

In this section, we report some key aspects of the
EDQNM closure used to investigate USHT. This model ac-
counts for the dynamics of second-order correlations repre-
sented in spectral space. Due to axisymmetry, the spectra
depend only on the modulus k (∈ [0 +∞]) of the wavevec-
tor k and on the angle θ (∈ [0 π]) between k and the ver-
tical direction. Also for symmetry reasons, the tensorial
structure of the spectral two-point velocity auto-correlation
tensor and velocity-buoyancy tensor reduces to four scalar
spectra Φ1(k,θ , t), Φ2(k,θ , t), Φ3(k,θ , t) and Ψr(k,θ , t)
representing respectively toroidal and poloidal kinetic en-
ergy, buoyancy scalar spectrum and co-spectrum between
poloidal velocity and buoyancy scalar [Godeferd & Cam-
bon, 1994]. This yields the following system of equa-
tions which takes advantage of a representation in the polar-
spherical frame of reference in spectral space, also called

the Craya-Herring frame:

(
∂
∂ t

+2νk2
)

Φ1 = T Φ1 , (5)
(

∂
∂ t

+2νk2
)

Φ2 = T Φ2 +2N sin(θ)Ψr, (6)
(

∂
∂ t

+2νk2
)

Φ3 = T Φ3 +2N sin(θ)Ψr, (7)
(

∂
∂ t

+2νk2
)

Ψr = T Ψr +N sin(θ)(Φ2 +Φ3) . (8)

In Eqs. (5)–(8), left hand side shows the dynamics and vis-
cous/diffusion contributions. In the right-hand side, linear
terms proportional to N stand for buoyancy effects while the
different non linear transfer terms noted T Φ1,Φ2,Φ3,Ψr (de-
pending also on k, θ and t) are expressed by two-point third-
order correlations evaluated from the four above two-point
statistical spectra following the EDQNM closure. Strat-
ification effects are specifically taken into account in the
closure for these triple correlations by including the buoy-
ancy timescale 1/N along with the turbulence timescale in
the eddy damping. Including the buoyancy time scale in
the model for energy transfer terms was shown to be indis-
pensable for the model to be able to reproduce accurately
USHT DNS [Burlot et al., 2015]. The EDQNM model has
thus been successfully tested against relevant configurations
with different acceleration strengths and mixing intensities.
It is worth mentioning that, due to the anisotropic structure
of spectra, the implementation of our EDQNM model is
much more complex than that of isotropic EDQNM. How-
ever, this complexity allows the EDQNM model to repro-
duce DNS results at a much lower computational cost, and
to reach very high Reynolds number regimes unattainable
by DNS, as shown in the coming section.

RESULTS
In this section, we detail the simulations carried out to

evaluate the late time regimes of USHT. Then, we present
and discuss the different results.

Configurations
We choose initial isotropic conditions for the differ-

ent EDQNM simulations. Accordingly, the different spec-
tra at t = 0 have no dependence on θ , the toroidal spec-
trum equals the poloidal one (Φ1 =Φ2) and the co-spectrum
Ψr is zero. Also for simplicity, the buoyancy scalar spec-
trum is initially taken at the same level as other spectra
such that Φ3 = Φ1 = Φ2. The initial energy spectrum
E(k) =

∫ π
0 2πk2 sin(θ)

(
Φ1+Φ2

2

)
dθ is similar to the one

used by [Lesieur & Ossia, 2000], namely:

E(k, t = 0) = A
(

k
kpeak

)s
exp

[
− s

2

(
k

kpeak

)2
]
. (9)

In Eq. (9), the parameter s gives the slope of infrared spec-
tra which controls the repartition of energy at large scales. It
varies from s = 1 to s = 5 in our ten different simulations as
indicated in Tab. 1. In each simulation, we impose the same
initial values for the kinetic energy K =

∫+∞
0 E(k,0)dk = 1

and viscosity ν = 5× 10−4. Therefore, kpeak corresponds
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Table 1. Characteristics of the different EDQNM cases
presented in this work: powerlaw s, peak wavenumber
kpeak, total kinetic energy K , Reynolds number Re, Froude
number Fr.

s kpeak K Re Fr

1 34.64 1 834 1.2

1.5 37.95 1 834 1.2

2 40.00 1 834 1.2

2.5 41.40 1 834 1.2

3 42.43 1 834 1.2

3.5 43.20 1 834 1.2

4 43.82 1 834 1.2

4.5 44.32 1 834 1.2

5 44.72 1 834 1.2
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Figure 1. Time evolution of the kinetic energy with re-
spect to non dimensional time t∗ = Nt. Each curve cor-
responds to different initial infrared exponent s. The slopes
for the different dashed straight lines corresponds to the the-
oretical β (s) of Eq. (1).

to the wavenumber at the maximum of the spectrum, and
A is adjusted in Eq. (9) in order to keep constant the ini-
tial Reynolds number Re = K 2/(εν) (ε being the kinetic
energy dissipation).

We specify initially the buoyancy frequency N for each
USHT simulations. The different cases are characterized
by the Froude number, Fr = ε/(NK ), measuring the rel-
ative importance of buoyancy forces with respect to iner-
tial forces. We choose a constant initial Froude number
Fr = 1.2 in all our simulations so that stratification effects
are relatively moderate initially, but increase rapidly in time.

Dynamics and energetics of USHT
We show in Figure 1 the time evolution of kinetic en-

ergy in the different EDQNM simulations. After some
transients, whose duration ∆t depends on initial conditions
(N∆t ∼ 2−4), the flow enters a self-similar regime and ki-
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Figure 2. Evolution of turbulent Reynolds number as a
function of time for the different cases of Tab. 1.

netic energy grows exponentially ∼ eβNt . As already men-
tioned in Eq. (1), the growth rate β strongly depends on
the initial distribution at large scale of energy in the turbu-
lent eddies. Two different situations are observed, similar
to what happens in HIT. For s≤ 4, the growth rate β is per-
fectly predicted by Eq. (1). For s > 4, the slope of the in-
frared spectrum evolves during a transient short time stage
under the action of backscatter effects, to finally set at the
value s = 4, which is later maintained. These results con-
firm the theory proposed by [Soulard et al., 2014] which
assumes the dominance of non-local interactions between
wavenumbers at small k.

Figure 2 shows the evolution of the Reynolds number
as a function of time. It shows the same evolution as kinetic
energy in the self-similar state. Globally, these self-similar
states are observed for Re > 103 and are maintained until
the end of the simulations around Re ∼ 106. As in Fig-
ure 1, a transient phase is noticed with two stages: a relative
decrease of the Reynolds number followed by a temporary
growth leading to the self-similar state. The intensity of the
decrease is clearly dependent on the initial energy distribu-
tion at large scales.

In Figure 3, we observe the time evolution of the
Froude number. It converges to stationary values in the
range Fr ∈ [0.3,0.5], values which also depends on initial
conditions. The initial slope at large scale tends to drive
the Froude number to different values. If the initial en-
ergy is preferentially distributed at larges scales, i.e. small
s value, the asymptotic value of the Froude number will be
smaller. The nearly steady behavior of the Froude number
does not arise at the same time as for the Reynolds number.
A bump is observed for large values of s, which disappears
progressively until the asymptotic value of Froude number
is reached. This sheds light on the different evolutions of
dissipation and kinetic energy depending on the initial en-
ergy distribution: the cascading time for energy from the
energetic scales to the dissipative ones depends on s. The
fact that, when the similarity state is reached, the Froude
number do not evolve anymore attests of an equilibrium be-
tween the vertical motion of large scale structures, driven by
the buoyancy force, and the drag they encounter. This is all
the more remarkable in the homogeneous case in which no
external length scale imposes a limit, with respect to actual
flows in which the physical domain limits the structures’
size growth. Moreover, the value reached by the Froude
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Figure 3. Evolution of the Froude number as a function of
time for the different cases of Tab. 1.
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Figure 4. Spectra of kinetic energy at initial time and
at the time corresponding to a given Reynolds number
(' 106). Initial spectra shifted a decade down for clarity.

number is smaller than one but not very small, attesting of
the equilibrium between nonlinear turbulent timescale and
the linear production timescale of buoyancy.

The energy spectra for the different cases are repre-
sented in Figure 4 both at t = 0 and at a time corresponding
to Re ' 106 in each simulation. It can be noticed that the
different self-similar regimes exhibit a clear well developed
k−5/3 inertial range over two decades. Also, it illustrates the
backscatter effects which modify the slope of the infrared
range of the spectra for cases with s > 4. The evolution
of the spectra for the different s cases shows that energy
uniformly increases throughout the scales from the initial
states, but also that the very important changes in the spec-
tral shape that occur in the large scales have very few influ-
ence on the rest of the distribution, in the inertial and dis-
sipative ranges. We therefore observe here the fact that the
buoyancy force acts onto all scales, but that nonlinear cas-
cade remains dominant and yields a Kolmogorov scaling,
independently on the initial conditions.

Characterization of anisotropy
It is clear that the structure of the velocity field in

USHT is strongly coupled to the vertical events occuring

in the flow, so that we expect turbulent structures to be
vertically oriented and elongated, as in convective turbu-
lence, but also that the fluctuating buoyancy field also ex-
hibit strongly anisotropic features. This translates in spec-
tral space through the dependence of the kinetic energy
and buoyancy scalar spectra with the orientation θ of the
wavevector, since incompressibility amounts to k · û = 0, so
that preferentially vertical velocity is associated with hori-
zontal wavevectors. Correspondingly, kinetic energy spec-
tra have more energy in the horizontal orientations of k,
at θ ' π/2. Please also note that the EDQNM model is
particularly well suited for this kind of analysis, since its
equations directly operate on the (k,θ )–dependent spectra,
whereas the same statistics from DNS require averaging and
are subjected to sampling biases.

We begin by examining the anisotropy of the Reynolds
stress tensor that can be measured by its vertical devia-
toric part b33 = 〈u3u3〉/〈uiui〉−1/3, whose time evolution
is represented in Figure 5. Starting from isotropic turbu-
lence for which b33 = 0, we observe a rapid increase of b33
within one or two stratification timescales. After this tran-
sient, b33 reaches an asymptotic value of 0.3 for the case
of steeper infrared powerlaw s = 5, but for the case of shal-
low infrared powerlaw s = 1 b33 slowly drifts away from
the peak 0.4 value, so that the flow becomes more and more
anisotropic. This may be due to local interactions that pro-
gressively propagate anisotropy from the highly anisotropic
large scales to smaller inertial scales. Whether an asymp-
totic limit is reached is an open question, but, our simula-
tions seem to suggest that it would only occur at very long
times for which the Reynolds number would become huge.

Concerning the characterization of the buoyancy scalar
spectrum, buoyancy being a scalar field, one cannot com-
pute an equivalent to the velocity two-point correlation
anisotropy which is based on its components. Therefore,
we choose to characterize the anisotropy of the buoyancy
scalar spectrum by the dimensionality parameter introduced
by Gréa [2013], which is based on a weighted integral as

sin2 γ =

∫ π
0
∫+∞

0 k2 sin3(θ)Φ3dkdθ
∫ π

0
∫+∞

0 k2 sin(θ)Φ3dkdθ
. (10)

Similar integrals are used in magnetohydrodynamics to
quantify the flow anisotropy through a Shebalin angle.
Here, the angle γ represents the angle of concentration of
buoyancy scalar fluctuations in the neighborhood of the ver-
tical direction. Then, as for b33 for the velocity field, we
observe a short-time transient during which sin2 γ increases,
although not as fast. At longer times, the evolution is much
slower for the case at s = 5 than for the case at s = 1. Note
that the anisotropy level varies a lot with s when s < 4, but
much less for s ≥ 4. This also attests of a different nature
in the dynamics, for wich backscatter is present in the latter
case but not in the former. In all cases however, the value
of sin2 γ > 2/3 indicates the presence of vertical patches
of density concentration, more elongated for low infrared
spectral slopes.

CONCLUSION
The USHT late time self-similar dynamics are inves-

tigated with an axisymmetric EDQNM model. The model
permits to reach very high Reynolds numbers Re∼ O(106)
out of reach of DNS, and this is especially useful for study-
ing the large-time asymptotic dynamics of USHT whose
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Figure 5. Time evolution of the vertical deviatoric part of
the Reynolds stress tensor b33.
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Figure 6. Time evolution of the dimensionality parameter
sin2 γ measuring anisotropy of the buoyancy parameter.

energy increases quickly since it is fed by the buyoancy
force-related production. Our results confirm recent theo-
retical predictions for USHT pertaining to the link between
the growth rate and the initial distribution of kinetic energy
at large scale. It also brings additional insight into the dif-
ferences of anisotropy structure appearing in the flow due to
initial conditions. An original result is that the Froude num-
ber evolves in time to become asymptotically steady and
sets at a value of order 0.3–0.5, for our set of initial param-

eters. This is a clue that an equilibrium is reached between
linear production and nonlinear cascade, and opens the way
to an improved modelling such as the drag-production one-
point model, including a dependence on big eddies distribu-
tion.

Unstably stratified turbulence is a simplified model for
phenomena that are observed in more complex situations,
such as Rayleigh-Taylor mixing. Our work shows that one
can link the large-time growth of the mixing layer to the
nature or wavelength of the initial instabilities that trigger
turbulence in Rayleigh-Taylor flows. Hence, this opens new
possibilities for understanding and predicting the evolution
of turbulent mixing layers induced by buoyancy effects. In
order to confer more relevance to our approach, our next
step will be to introduce time-dependent buoyancy param-
eter N, since the mean density gradient evolves in time in
non homogeneous mixing layers.
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