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ABSTRACT
Turbulent Rayleigh-Bénard convection (RBC) is ex-

amined in terms of its mechanical energy budget. Three-
dimensional large-eddy and direct numerical simulations
are conducted at moderately large Rayleigh numbers. An
expanded view of the mechanical energy pathways for RBC
convection is developed for the the first time by recognis-
ing that mechanical energy includes gravitational potential
energy and that the available component of this potential
energy (APE) is the energy source for convection. The
partitioning of energy pathways between large and small
scales of motion is also analysed based on their correspond-
ing temporal scales. The relative magnitudes of different
pathways change significantly over the range of Rayleigh
numbers Ra ∼ 107 −1013 . At Ra < 107 small-scale turbu-
lent motions are energized directly from APE via turbulent
buoyancy flux while kinetic energy is dissipated at compa-
rable rates by both the large- and small-scale motions. In
contrast, at Ra ≥ 1010 most of the APE goes into kinetic
energy of the large-scale flow, and the large scales undergo
shear instabilities that sustain small-scale turbulence. At
large Ra one half of the total APE supply goes to viscous
dissipation of kinetic energy and the other half to mixing of
the thermal field. Therefore, mixing efficiency approaches
50% at large Ra, as also predicted by a scaling analysis. At
large Rayleigh number the viscous dissipation is largely in
the interior, while the irreversible mixing is largely confined
to the unstable boundary layers. The inclusion of the me-
chanical energy in the budget provides new information on
the roles of different length scales and on the mechanics of
the interior and boundary layer.

Introduction
Rayleigh-Bénard convection (RBC) in a box is driven

by buoyancy owing to heating from below and cooling
from above. This is a idealized model for turbulent heat
transfer, with many applications in astrophysics, atmo-
spheric, environmental physics and human process tech-
nology. Its dynamics is governed by the Rayleigh number

Ra = gα∆T H3/(νκ) and the Prandtl number Pr = ν/κ .
Here, g is the gravitational acceleration, α is the thermal
expansion coefficient, ∆T the temperature difference be-
tween the bottom and the top of the domain, H the height
of the domain, and ν and κ are the kinematic viscosity and
the thermal diffusivity, respectively. RBC has been stud-
ied extensively using theoretical, numerical and laboratory
experiments with the aim of understanding the heat trans-
port (measured commonly in the form of Nusselt number
Nu(Ra;Pr)), the large scale circulation and the boundary
layer properties including thermal structures and convec-
tive plume dynamics etc (Siggia, 1994; Ahlers et al., 2009;
Lohse & Xia, 2010), over a range of parameter regimes.

In RBC energy is injected in the form of available
potential energy (which is a special from of potential en-
ergy essential for ’stirring’ (Lorenz, 1955; Winters et al.,
1995; Peltier & Caulfield, 2003)) by steady thermal forc-
ing at the top and bottom plates. Thermal boundary lay-
ers adjacent to plates soon trigger the flow motion at var-
ious scales by releasing available potential energy. Feed-
backs of energy arises as the motions at different scales in-
teract. Therefore, incorporating the potential energy reser-
voir in the mechanical energy frame work and allowing for
energy transfer between its various forms are essential to
understand more precisely both the boundary layer dynam-
ics and the bulk of flow. This new and complete frame work
(see Fig. 5 and Hughes et al. (2013), Gayen et al. (2013b))
for RBC includes all possible energy sources and sinks and
also helps to quantify the complex turbulent mixing. Previ-
ous work has developed a different energy budget on RBC
by considering only its kinetic and thermal forms (Dear-
dorff & Willis, 1967; Siggia, 1994; Ahlers et al., 2009;
Lohse & Xia, 2010). The volume integrated dissipation
of the total kinetic energy and the temperature field can
be elegantly expressed in non-dimensional forms as εu =
ν3(Nu − 1)RaPr−2H−4 and εθ = κ∆T 2NuRaH−2 (Sig-
gia, 1994), respectively, under the Oberbeck-Boussinesq
approximation. Unfortunately, the existing frame work is
unable to provide much insight into the exchange of energy
among its different forms, particularly where fluid motions
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at different scales are involved. Our aim is to investigate
the different forms of energy in the RBC and the pathways
between them, in the addition to the potential energy bud-
get and its decomposition into components of available and
background potential energy.

Numerical methods
The computational domain consists of a rectangu-

lar box of height H, with bottom and top boundaries at
z=−0.5H,0.5H, and horizontal dimensions L×L. The as-
pect ratio of the domain for most solutions is A=L/H=3, as
we are most interested in wide layers, without side wall ef-
fects. Navier-Stokes (NS) equations under the Boussinesq
approximation are written in Cartesian coordinates [x,y,z]
in non-dimensional form as:

∇ · û = 0, (1)
Dû
Dt̂

= −∇ p̂+Pr∇2û+RaPrT̂k−∇τ̂, (2)

DT̂
Dt̂

= ∇2T̂ −∇λ̂ , (3)

where the dimensionless quantities (denoted by a hat, af-
ter scaling mass, length, time and temperature by ρ0H3,
H, H2/κ and ∆T = Th − Tc, respectively) are the velocity
û = (û, v̂, ŵ), the temperature difference T̂ from the refer-
ence value T̂c, the deviation p̂ from the background hydro-
static pressure and the time t̂. In the large eddy simulation
(LES) û and T̂ are to be interpreted in the equations as fil-
tered quantities (i.e. we drop the overbar conventionally
used to denote filtering) and the quantities τ̂ and λ̂ are the
sub-gridscale (SGS) stress tensor and density flux vector,
respectively. These require models for closure in LES. In
direct numerical simulation (DNS) cases, τ̂ and λ̂ are zero.

Present study coveres the Rayleigh number range 6×
106 ≤ Ra ≤ 6× 1012 with a fixed Prandtl number Pr=1.
Direct numerical simulations (DNS) used a 5123 grid,
stretched in the z-direction, up to moderately large Rayleigh
numbers Ra ≤ 6×108 . Large eddy simulations (LES) were
used for 6×106 ≤ Ra ≤ 6×1012 (with grids up to 10243).
Additional DNS at Ra=6× 108 were carried out for aspect
ratios of A=1.5 and A=6.

The NS equations are numerically solved to obtain the
velocity and the deviations from background density and
pressure using a mixed spectral/finite difference algorithm
on a staggered grid. Horizontal derivatives are treated with
a pseudo-spectral method, and the vertical derivatives are
computed with second-order finite differences. A third-
order Runge-Kutta-Wray method is used for timestepping,
and viscous terms are treated implicitly with the Crank-
Nicolson method. A subgrid-scale model is used for the
higher Ra number simulations. Detailed description of the
subgrid-scale model and algorithm are found in Gayen et al.
(2010). Periodicity is imposed in the horizontal, x and y,
directions for velocity, pressure and density. Constant uni-
form temperatures TH and TC with non-slip velocity bound-
ary conditions are applied at the bottom and top boundaries
of the domain, respectively.

The grid resolution in the DNS was compared with the
Kolmogorov scale, η , and the Batchelor scale ηb, where
η = ηb = (ν4/ε)1/3, based on the molecular viscosity
ν and turbulent dissipation ε at Pr = 1. We adopt the
criterion l/η ≤ π as proposed by Grötzbach (1983) and

(Stevens et al., 2010) (where l is the resolution in any given
direction). The resolution satisfies the criterion in all three
directions for DNS.
The resolution criterion (l/η ≤ π) for DNS is not appli-
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Figure 1. Dissipation spectra of (a) the horizontal veloc-
ity, u′ and (b) the temperature fluctuations, Θ′, at boundary
layer, in the thermally equilibrated state.

cable to the coarser grid used for LES. The requirement
for LES is that is captured faithfully the important part
of the dissipation spectra as shown here. The dynamic
diffusivity and viscosity adjust according to the slope of
the cascade to ensure that dissipation is correct. Figure
1(a) compares dissipation spectra for velocity (2νk2Eu′ )
from the DNS and LES at the same Rayleigh number
(Ra = 6× 108, the highest practical value for DNS). The
two spectra overlap nicely up to the cut-off wavenumber for
the LES. The unresolved part of the dissipation is modelled
using a dynamic eddy viscosity to obtain accurate closure
(Gayen et al., 2010). We have chosen here the spectra in
the thermal boundary layer at the level of maximum shear,
and compare the results for a lower resolution LES (2563)
with a higher resolution DNS (5123), as the most rigorous
test. Similarly, the scalar dissipation spectra, 2κk2EΘ′ for
temperature (figure 1b) shows good agreement up to to the
cut-off wave number.

Figure 2 shows the dissipation spectra for velocity at
higher Ra numbers: Ra = 6 × 1010 and Ra = 6 × 1012,
again in the boundary layer. Both techniques efficiently
capture the dissipation up to a cut-off wave number. The
grid resolution for LES cases maintained approximately
l ≤ 10η . The sub-gridscale model in the LES was based
on a dynamic eddy viscosity and eddy diffusivity, as
previously shown to be accurate for convection (Kimmel
& Domaradzki, 2000; Peng et al., 2006; Chung & Pullin,
2010; Shishkina & Wagner, 2008) (the detailed algorithms
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are found in Armenio & Sarkar (2002); Gayen et al.
(2010)).
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Figure 2. Dissipation spectra of the horizontal velocity, u′

for LES run at (a) Ra = 6×1010 and (b) Ra = 6×1012, at
boundary layer, in the thermally equilibrated state.

Results
Averaged profiles of temperature at its thermally

equilibrated-state are shown for different Ra in figure 3.
Simulations at Ra > 1010 reveals the logarithmic temper-
ature profile outside the viscous sub-layer, as reported by
Ahlers et al. (2012). Fig. 4 presents the Nusselt number as a
function of Rayleigh numbers, Ra for Pr= 1.0. The trend of
Nu scaling agrees well with the previous experimental data
of (Niemela et al., 2000, 2001) and recent direct numerical
simulation of Stevens et al. (2011) of RBC studied in cylin-
drical geometry of aspect ratio around A ∼ 0.25−0.5. The
present LES runs accurately capture heat transfer and re-
produce the DNS results at Ra ≤ 6× 109. The observed
Nu(Ra) scaling never exceeds the 1/3 power law, but a
change of slope occurs around Ra ∼ 109, consistent with
previous DNS (Verzicco & Camussi, 2003) and experimen-
tal results (Niemela et al., 2000, 2001). At the highest Ra
considered here, there is no sign of a transition to the ulti-
mate Kraichnan regime (Kraichnan, 1962; Lohse & Toschi,
2003).

Our main focus in this paper is to investigate the me-
chanical energy budget of the Rayleigh-Bénard convection
based on the the generalised energetics framework as shown
schematically in Fig. 5. This framework has been proposed
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Figure 3. Horizontally averaged temperature profiles as a
function of distance from the bottom and the top plate are
shown. The dashed straight lines indicates the logarithmic
part of the profiles.
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Figure 4. Values of Nu/Ra1/3 obtained here (red) as a
function of Ra, and comparison with previous works. Re-
sults at aspect ratios of A = 1.5,3,6 and Ra = 6×108 all lie
within the range of the bar shown at that Ra. The present
DNS and LES at Ra < 109 are indistinguishable from each
other.

by Hughes et al. (2009) for the global ocean circulation
and recently investigated for horizontal convection Gayen
et al. (2013a) and Griffiths et al. (2013), where convec-
tion is driven by placing both buoyancy sources at the same
horizontal boundary. Detailed derivations of each terms in
the frame work are found in Hughes et al. (2009, 2013).
The forms of mechanical energy are kinetic energy Ek =
ρ0/2

∫
uiuidV and potential energy Ep = g

∫
zρdV, which

are represented as two separated reservoirs with energy
transfer between them via the buoyancy flux, Φz = g

∫
ρw

dV. Here, ui is the velocity component in the ith direction
and z is the vertical coordinate of the fluid parcel of volume
dV. Transformation of mechanical energy that have a ther-
modynamic effect in the system are indicated notionally by
a connection to the internal energy reservoir (see Tailleux
(2009) for a more detailed description).

The potential energy, Ep, is further decomposed into
components of background potential energy (BPE) Eb =
g
∫

z∗ρdV and available potential energy, Ea = Ep − Eb
(Lorenz, 1955; Winters et al., 1995). The background pota-
tial energy of a fluid volume can be defined by assigning
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Figure 5. Schematic diagram showing the various forms
and transformations of mechanical energy in a density-
stratified flow of a linear Boussinesq fluid (Hughes et al.,
2009). Detailed descriptions are found in text. Where en-
ergy transfers can be bidirectional, an additional arrow de-
notes the positive direction.

to each parcel a height z∗ = z∗ (ρ) at which it would come
to rest following a adiabatic relaxation of the density field.
The role of available potential energy, which is the main
driver of the fluid motion for the RBC, has been largely
overlooked. APE and BPE exchange energy via irreversible
mixing, Φd = −gκ

∫
(dz∗/dρ)(∂ρ/∂xi)

2dV, the release of
internal energy to potential energy by molecular diffu-
sion (down the background gradient), Φi =−gκL2(〈ρ〉H −
〈ρ〉0), and the differential buoyancy input at a given level,
Φb2 = gκ

∮
z∗(∂ρ/∂xi)ni dS, where 〈〉z denotes a horizon-

tal area average at height z and S is the surface bounding
the volume. In physical terms Φb2 represents the generation
rate of available potential energy by maintaining a density
field that is not in its adiabatically relaxed state and Φi cor-
responds to the rate at which the centre of mass of the vol-
ume would be raised or lowered by molecular diffusion if
there was no convection. Viscous dissipation of kinetic en-
ergy occurs at the rate ε = ρ0ν

∫
(∂ui/∂x j)

2. The net buoy-
ancy input at any level, Φb1 = gκ

∮
z∗(∂ρ/∂xi)ni gives the

volume integrated rate of change of potential energy (and
available potential energy) by net heating/cooling at each
level.

We further decompose the kinetic energy reservoir into
mean kinetic energy, Ek = ρ0/2

∫
uiuidV and turbulent ki-

netic energy, E ′
k = ρ0/2

∫
u′iu

′
idV. Here, mean (overbar) ve-

locity and density components are obtained by time averag-
ing over three turn-over time periods, τO (=

√
H/gα∆T ).

Fluctuating motions (primes) are evaluated after the devia-
tion from the mean motion. Small scale turbulent motions
in volume are sustained by extracting energy from the mean
flow by shear production, ΦT = −ρ0

∫
u′iu

′
j(∂ui/∂x j)dV

and the turbulent buoyancy flux, Φ′
z = g

∫
ρ ′w′dV, which

is supplied from available potential energy.
For RBC applied mechanical energy forcing in the

form of surface stresses (Φτ and Φ′
τ ) are absent and en-

ergy is supplied directly to the APE reservoir the rate
Φb2 (= ρ0κgα∆T NuL2). We have normalized all the en-
ergy transfer rates by the Φb2 to compare various cases in
Fig. 6. Our numerical simulation results for RBC confirm
that the rate of dissipation due to irreversible mixing ex-
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Figure 6. Time-averaged domain integrated values of nor-
malized conversion rates for (a) mean and (b) fluctuation
kinetic energy reservoirs at different Ra numbers. Here,
normalization factor is the rate of APE supply from domain
boundary Φb2(= ρ0κgα∆T NuL2).

actly is equal to the generation rate of APE; Φd = Φb2,
which has been theoretically predicted by Hughes et al.
(2009) and recently shown for horizontal convection by
Gayen et al. (2013a). For RBC Φi is negative and negli-
gible compared to other conversion terms. At low Ra num-
ber energy is transferred to both the mean and the fluctuat-
ing kinetic motions via buoyancy flux at comparable rates.
Generation of small scale motions by shear production is
small. In physical terms, small scale convection is the pri-
mary source of turbulent motions. Viscous dissipation oc-
curs at approximately equal rate from both the mean mo-
tions, ε , and the small scale motions, ε ′. With increas-
ing Ra number a large scale circulation, known as ”wind”,
develops (Niemela et al., 2001) inside the box, and corre-
sponds to a significant change in the energy pathways in
Fig. 5. More energy is pumped to the kinetic energy reser-
voir through mean buoyancy flux, because small scale con-
vective plumes are swept into a large scale flow (Shang
et al., 2003; Ahlers et al., 2009). Viscous dissipation di-
rectly from large scale structures is not efficient and de-
creases with Ra number. At higher Ra the wind velocity of
the large scale circulation increases and the velocity bound-
ary layer thickness decreases significantly, resulting in en-
hancement of the boundary shear (Grossmann & Lohse,
2002; Ahlers et al., 2009). Small scale motions are initi-
ated through shear production from large scale mean flow.
At Ra ∼ 1013 almost 80% of the turbulence is produced by
shear compared to a 20% contribution the from the APE
via turbulence buoyancy flux due to small scale convective
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(a) (b) (c)

Figure 7. Visualization of the thermal structures by the iso-surfaces of normalized temperature field, (T −TC)/∆T inside a a
sub-domain which extends vertically from z=0.3δ95 to z = H/2 from the bottom plate at (a) Ra = 6× 106, (b) Ra = 6× 108

and (c) Ra = 6×1012 . Here dark color indicates the lightest buoyant fluid.

plumes. These small scale motions are dissipated viscously
ε ′. Therefore, RBC at higher Ra numbers is the results of
primary energy flow from APE to mean KE, then mean KE
to TKE via shear, whereas it is dissipated by viscosity. This
corresponds to a large energy transfer through left handed
pathways of the energy wheel in Fig. 5.

Enhancement of the boundary layer shear owing to
large scale circulation at higher Rayleigh number is also
evident from the flow structures in the proximity of the
top/bottom plates, as portrayed by iso-surfaces of thermal
field in Fig. 7. At small Rayleigh number (Ra ∼ 107)
cell structures are coherent and bounded by convergence
lines that corresponds to the base of sheet plumes of ris-
ing buoyant fluid (Puthenveettil & Arakeri, 2005; Zhou
et al., 2007). Alignment of the convergence lines is ran-
dom and unaffected by the weak circulation (’wind’) at the
box scale. Mushroom like structures form at the nodal
points where sheet plumes collide and convolute as previ-
ously investigated by Zhou et al. (2007) in laboratory ex-
periment of RBC using water as a working fluid at Ra ∼
5× 108 − 6× 109. The thermal structures change signifi-
cantly at higher Rayleigh numbers under the influence of the
large scale ’wind’. Sheet plumes are instead aligned along
the direction of wind shear and merge together along a line
to form a mega plume. A tendency to form mega plumes
is evident at Ra ∼ 109, but these the large scale structures
along with well organized convergence lines are very clear
at Ra ∼ 1013, as shown in Fig. 7(c). Similar observations
have been made experimentally by Puthenveettil & Arak-
eri (2005) at Ra ∼ 1011. At large Ra numbers, a homo-
geneous distribution of small convectiive plumes inside the
boundary layer is absent, reflecting weak energy transfer
from APE to fluctuating kinetic energy reservoir via turbu-
lent buoyancy flux, Φ′

z (ref. Fig. 6).

Rayleigh-Bénard convection can be characterized as an
efficient mechanism of heat transport in a stratified flow in
terms of the proportion of supplied energy that results in
mixing, i.e. the mixing efficiency (Hughes et al., 2009;
Peltier & Caulfield, 2003; Gayen et al., 2013a) defined as
η =(Φd −Φi)/(Φd −Φi+ε). This evaluates to η ≈ 0.5001
from our numerical simulation for the highest Ra consid-
ered here, which in agreement with resent theoretical esti-
mations, (η → 1/2) for RBC at higher Ra regime (Hughes
et al., 2013; Gayen et al., 2013b).

Conclusion
RBC has been studied in the three-dimensional rectan-

gular box geometry using direct and large eddy simulation.
The constant thermal forcing which is source of system
available potential energy to maintain the flow. The supply
of energy to support turbulent motions occurs in a manner
that depends strongly on Rayleigh number. At low Ra both
the small and the large scale motions extract a comparable
amount of APE via the buoyancy flux, and there is small
exchange of energy between the mean and the turbulent ki-
netic energy reservoirs. At higher Ra a significant portion
of the APE supply (80% for highest Ra) goes to mean mo-
tions that further generate small scale turbulent motion via
shear production throughout the domain, particularly large
in magnitude inside the boundary layer. Shear across the
boundary layer is seen to set the large thermal structure by
forcing sheet plumes to converge. The irreversible mixing
that is required to balance the boundary buoyancy forcing
(APE generation) is concentrated mostly inside the thermal
boundary layer.
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