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ABSTRACT
Supersonic and hypersonic flows often encounter high

heat loads due to presence of shock waves. The unclosed
turbulent energy flux correlation in the mean energy conser-
vation equation significantly affects the heat transfer rate.
In conventional RANS models, which are based on gradi-
ent diffusion hypothesis, it is modelled in terms of turbulent
conductivity and gradient of mean temperature. This mod-
elling approach often overpredicts the value of energy flux
in the region of the shock. In the current work, we first
apply the conventional and realizable model to predict the
turbulent energy flux in canonical shock-turbulence interac-
tion. The shortcomings of these models in predicting the
energy flux across the shock are highlighted, and a differen-
tial equation model is proposed based on linear theory. The
results obtained are compared with available direct numeri-
cal simulation data and a good match is found for turbulent
energy flux generation across a shock. Finally, for its ease
of implementation, an algebraic model is proposed with the
aid of linear theory that predicts the turbulent energy flux
correctly across the shock for a range of upstream Mach
numbers.

1 INTRODUCTION
High-speed flows in aerospace applications have shock

waves interacting with boundary layers in different parts
of the vehicle surface and in engine components. Such
shock/boundary-layer interactions (SBLI) are often marked
by high localized surface pressure and heat transfer rates.
Predicting the heating loads is especially important in su-
personic and hypersonic applications with turbulent bound-
ary layers. Majority of the existing turbulence models for
heat flux prediction yield acceptable results in boundary-
layer flows (Bowersox, 2009), but their predictive capability
is severely limited in shock-dominated flows (Roy & Blot-
tner, 2001).

An important unclosed term in the mean energy con-
servation equation, which governs the heat transfer rate, is

the turbulent energy flux vector̃u′′j e′′. Here,u′′j represents

the velocity fluctuation in thejth direction,e′′ represents the
internal energy fluctuation and tilde represents Favre aver-
aging. Conventionally, this term is modelled as a product
of turbulent conductivity and gradient of mean temperature.
Turbulent conductivity is related to the eddy viscosityµT
via a turbulent Prandtl numberPrt . A constant value of
Prt = 0.89 gives satisfactory result in flat plate boundary
layers and is often used in SBLI configurations. This mod-
elling approach however overpredicts the actual wall heat
transfer rate significantly in SBLI.

An alternate model based on variablePrt approach is
proposed by Xiaoet al. (2007). It solves additional dif-
ferential equations for enthalpy variance and its dissipation
rate, and employs these two quantities in the formulation of
turbulent heat flux vector. In shock-dominated flows, this
approach leads to improved wall heat flux predictions, yet
it overpredicts experimental data. To the best of our knowl-
edge, there is no direct study which involves modelling of
the turbulent energy flux across the shock. An effort in this
direction is the work by Bowersox (2009) which proposes
an algebraic model for the turbulent energy flux in super-
sonic flows, but is limited to zero-pressure-gradient bound-
ary layers without shock waves.

In a recent work, Quadroset al. (2015) present a de-
tailed study of the turbulent energy flux at a shock wave.
They investigate the physical processes that govern the gen-
eration of energy flux correlation in a canonical shock-
turbulence interaction (STI). This model problem consists
of a homogeneous isotropic turbulence which is purely vor-
tical in nature being carried by a one-dimensional uniform
mean flow passing through a nominally normal shock wave.
The turbulence is amplified by the shock, and the shock in
turn gets distorted. Schematic of this problem is shown in
figure 1. This is possibly the simplest configuration that
isolates the effect of shock on turbulence without other ef-
fects such as boundary-layer gradient, flow separation and
streamline curvature. Inspite of its geometrical simplic-
ity, STI displays a range of physical effects such as turbu-
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Figure 1. Schematic showing a shock wave distorted upon
interaction with turbulent fluctuations.

lence anisotropy, generation of acoustic waves, baroclinic
torques, and un-steady shock oscillations.

The work presented in Quadroset al. (2015) relies pri-
marily on linear interaction analysis (LIA), a theoretical ap-
proach to analyse canonical STI. The analysis involves solv-
ing the fundamental interaction of a single two-dimensional
plane wave with a shock which generates downstream dis-
turbances that can be characterised in terms of Kovasz-
nay modes of vorticity, entropy and acoustic. Integration
over a specified upstream turbulence spectrum yields three-
dimensional turbulence statistics downstream of the shock.
The LIA results obtained for energy flux are compared
with direct numerical simulation (DNS) data available from
Larssonet al. (2013). A good match is found between LIA
and DNS data in predicting some of the key physics of the
interaction.

As part of modelling the turbulent energy flux in
shock-turbulence interaction, Quadroset al. (2015) identify
the mechanisms contributing to turbulent energy flux gen-
eration based on linearised Rankine-Hugoniot conditions
which are valid for small upstream fluctuations. The domi-
nant terms are further modelled based on LIA results. The
resulting differential equation for turbulent energy flux is
solved along with thek and ε equation to give the jump
across the shock as well as the downstream decay. A good
match in the streamwise evolution is found upon compari-
son with the DNS data for a range of upstream Mach num-
bers. However, it is to be noted that including an addi-
tional differential equation for energy flux may require sig-
nificant modification in the existing computational fluid dy-
namics (CFD) codes. For their ease of implementation, al-
gebraic heat flux models are preferred in CFD, and are in
use in most Reynolds-averaged Navier-Stokes (RANS) sim-
ulations.

In this paper, we apply existing turbulence models to
predict the turbulent heat flux generated at a shock wave.
These include conventional eddy viscosity model and real-
izable model. A variant of the previously modelled differen-
tial equation for the turbulent energy flux is also presented.
These model predictions are evaluated against linear theory
results and available DNS data. Finally, we develop a new
algebraic model to accurately predict the energy flux gener-
ated in shock-turbulence interaction.

2 TURBULENT ENERGY FLUX IN SHOCK-
TURBULENCE INTERACTION
Quadroset al. (2015) studied the generation of turbu-

lent energy flux in the canonical STI problem using LIA,
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Figure 2. Variation ofu′2e′2 with upstream Mach num-
ber. The velocity fluctuation is normalized by the upstream
mean velocity and the energy fluctuation is normalized by
the downstream mean temperature and the specific gas con-
stantR. All correlations are further normalized by the up-
stream TKE.

M1 Mt Reλ Rkk/(2U2
1 )

1.28 0.15 40 7.3×10−3

1.50 0.15 40 5.3×10−3

1.87 0.22 40 6.9×10−3

2.50 0.22 40 4.0×10−3

3.50 0.22 40 2.1×10−3

4.70 0.23 40 1.2×10−3

6.00 0.23 40 0.7×10−3

Table 1. List of the DNS cases from Larssonet al. (2013)
with the listed parameters corresponding to the location just
upstream of the shock.

which models the upstream turbulence as a collection of
planar waves. Each of these waves is considered to inde-
pendently interact with the shock. The governing equa-
tions downstream of the shock are linearized Euler equa-
tions and the jump in fluctuations across the shock is de-
termined by linearized Rankine-Hugoniot conditions. A set
of linear algebraic equations are obtained by substituting
the planar waveforms into the governing equations. Solv-
ing these equations yields the disturbance field downstream
of the shock for a given upstream vortical wave. The down-
stream turbulent field for a full three-dimensional upstream
turbulence is obtained by integrating the two-dimensional
planar wave results over a specified energy spectrum. De-
tails of this analysis can be found in Maheshet al. (1996).

DNS of canonical STI was carried out by Larssonet al.
(2013) for a vortical turbulence passing through a normal
shock. Table 1 shows the cases from the DNS analysis
whose data is utilized in the current study. The Mach num-
bers range from low supersonic to hypersonic limit. The tur-
bulent Mach numberMt and the Reynolds number based on
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Taylor scaleReλ for each of the cases are also listed. Here,
turbulent Mach number is defined asMt =

√
Rkk/ã, where

Rkk represents twice the turbulent kinetic energy, andã rep-
resents the Favre averaged speed of sound.Reλ is given
by ρ

√
Rkk/3λ/µ, whereλ is the Taylor scale andµ is the

average dynamic viscosity.
The turbulent energy flux values upstream of the shock

are zero as the turbulence is vortical in nature and void of
temperature fluctuations. However, just downstream of the
shock, both LIA and DNS predict a peak positive energy
flux. Further downstream, DNS shows a steep decrease in
the energy flux values to negligible levels whereas LIA pre-
dicts a constant far-field value. The peak values of energy
flux as predicted by both DNS and LIA for varying Mach
numbers are shown in figure 2 (reproduced from Quadros
et al. (2015)). Also shown is the far-field value of LIA,
and at high Mach numbers, it is almost equal to the LIA
peak energy flux. Note that conventional Reynolds aver-
aging/fluctuation is used instead of its Favre counterpart, as
negligible difference is observed upon comparison using the
DNS data set. The peak energy flux as per theory matches
well with DNS for low Mach numbers uptoM1 < 2, with the
theory overpredicting the values at higher shock strengths.
The LIA prediction reaches an asymptotic value of 1.32 at
high Mach numbers, while DNS shows a limiting value less
than 1. Overall, a good qualitative match is observed be-
tween LIA and DNS indicating that the key physical mech-
anisms governing the energy flux transport are captured by
the theory.

It is important for any model that aims to predict the
turbulent energy flux results, to capture this peak posi-
tive value. Quadroset al. (2015) formulated a differential
equation-based model, that for a given Mach number, cap-
tures the corresponding peak positive value and the acoustic
decay that follows. A good match with DNS data was ob-
tained for a range of upstream Mach numbers, and a slight
variant of this model is discussed in this work. However,
greater emphasis is laid in the current study on the develop-
ment of an algebraic model due to its ease of implemen-
tation in comparison with the differential equation-based
model.

3 MODELLING OF TURBULENT ENERGY
FLUX

3.1 Conventional Modelling
The turbulent energy flux is conventionally modelled

using gradient diffusion hypothesis as

u′e′ =−κT

ρ
∂T
∂x

, (1)

whereρ andT are the mean density and temperature. Ther-
mal conductivityκT is given byκT = µTCv/PrT , where
Cv is the specific heat at constant volume andPrT repre-
sents the turbulent Prandtl number having a constant value
of 0.89. Eddy viscosity is given byµT = C0

µ ρk2/ε, where

C0
µ = 0.09, k is the turbulent kinetic energy (TKE) andε

is the dissipation rate of TKE. In order to compute for the
turbulent energy flux in the given model problem, the mean
flow variables are prescribed as hyperbolic tangent profiles
across the shock, with the shock thickness obtained from
DNS data. The values ofk andε used in expression for eddy
viscosity are obtained by solving the corresponding differ-
ential equations (Sinhaet al., 2003) using a fourth order
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Figure 3. Peaku′2e′2 values for varying upstream Mach
numbers as predicted by conventional model with the
shock-thickness taken from the DNS data. Note that the
peaku′2e′2 increases without bound as the shock-thickness
is decreased, as it would be in an actual CFD simulation
during grid-refinement. The results correspond to turbulent
Mach numberMt = 0.15 just before the shock. Normalisa-
tion as described in figure 2.

Runge-Kutta method with the inlet boundary values speci-
fied from the DNS data. The resulting values fork andε
match well with DNS as reported in earlier works (Sinha
et al., 2003; Sinha, 2012).

The value of energy flux obtained using (1) is zero in
the region upstream and downstream of the shock due to
uniform mean flow temperature on either sides of the nor-
mal shock. However, the energy flux assumes a peak nega-
tive value in the region of the shock, and the peak values ob-
tained for a range of upstream Mach number are highlighted
in figure 3. In the limit ofM1 → 1, the value of energy flux
predicted by the model reduces to zero, and with increasing
Mach number, the magnitude of the negative peak rises to
a value that is almost two orders of magnitude higher than
the post-shock DNS predictions. Also, in a CFD frame-
work, this formulation yields a grid-dependent value of en-
ergy flux in the region of the shock, and increasing the grid
point density further increases the magnitude of the negative
peak.

3.2 REALIZABLE MODEL
In the canonical shock-turbulence interaction, the

Reynolds stress as predicted by the conventional model is
given by (Sinhaet al., 2003)

ρu′u′ =−4
3

µT
∂u
∂x

+
2
3

ρk. (2)

This modelling approach leads to uphysically high values
of TKE in the region of shock due to its proportionality
with the mean velocity gradient. The realizability correc-
tion limits the value of eddy viscosity in the region of shock
through the formCµ = min(Co

µ ,
√

Co
µ/s) (Thivet et al.,

2001), wheres = S/(ε/k), S =
√
(2Si jS ji − (2/3)S2

kk) and
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Figure 4. Variation of peaku′2e′2 with upstream Mach
number as predicted by realizable model with shock thick-
ness taken from the DNS data. The peak value is indepen-
dent of the shock thickness, which is indicative of a grid-
independent solution in a CFD simulation. Normalisation
as described in figure 2.

Si j = 1/2(∂ui/∂x j +∂u j/∂xi). In the region of high gradi-
ents such as shockCµ = (

√
co

µ ε)/(Sk) and therefore

µT =

√
3Co

µ
2

ρk∣∣∣ ∂u
∂x

∣∣∣
. (3)

Thus the expression for energy flux given by (1) re-
duces to

u′e′ =−

√
3C0

µ

2
kCv

PrT

∣∣∣ ∂u
∂x

∣∣∣
∂T
∂x

(4)

in the shock region.
The value of TKE as well as the mean variables re-

quired for the above formulation are obtained as described
in the previous section. Similar to the conventional model,
the realizable model yields a zero value of energy flux out-
side the region of shock. However, inside the shock region,
a peak negative value is obtained as per (4). This peak en-
ergy flux value for varying Mach number is plotted in figure
4. For almost all Mach numbers, the realizable model pre-
dicts a negative energy flux in the shock region but the mag-
nitude is restricted due to the realizability constraint, and is
of the same order as the post-shock DNS value. Contrary
to the eddy viscosity formulation, the realizability limiter
yields a peaku′2e′2 which is independent of the shock thick-
ness assumed i.e., in a real CFD simulation, this peak value
in the shock region will be insensitive to grid refinement.
In the limit of M1 → 1, the realizable model switches to
the conventional model formulation and predicts a value of
zero energy flux as shown in the inset figure. In the limit of
M1 → ∞, the model saturates to a negative limiting value, a
trend similar to the DNS data but opposite in sign.

3.3 Differential Equation-Based Model
The equation for the conservation of total enthalpy

across the shock wave can be written in terms of the shock-
normal componentun as

∂h
∂x

+un
∂un

∂x
= 0. (5)

For an unsteady distorted shock wave of the form presented
in figure 1,un ≃ u+u′−ξt , which assumes small deviation
of the shock wave from its mean location. Linearising the
above equation in terms of fluctuations in enthalpyh′ and
streamwise velocityu′, we get

∂h′

∂x
+u

∂u′

∂x
+u′

∂u
∂x

−ξt
∂u
∂x

= 0 (6)

Taking a moment withu′ and Reynolds averaging yields a
differential equation for the energy flux correlation.

γ
∂
∂x

u′e′ =−u′2
∂u
∂x

+u′ξt
∂u
∂x

−u
∂
∂x

u′2

2
+h′

∂u′

∂x
(7)

where the enthalpy fluctuations are replaced by the inter-
nal energy fluctuations viah′ = γe′. The first term on the
RHS represents generation of turbulent energy flux due to
mean compression in the shock wave, and the second term
brings in the corresponding shock-unsteadiness effect. The
change in the streamwise Reynolds stress across the shock
contributes to the turbulent energy flux via the third term on
the RHS. The last term is a correlation of the enthalpy fluc-
tuations with the change in the streamwise velocity fluctua-
tions across the shock.

The first two source terms are analogous to the produc-
tion and the shock-unsteadiness damping terms in the TKE
equation presented in Sinhaet al. (2003). We follow their
modelling approach to writeu′ξt = b1u′2, which is based
on the assumption that the unsteady shock oscillations are
caused by the incoming velocity fluctuations. The stream-
wise Reynolds stress is then closed in terms of the turbu-
lent kinetic energy by considering its isotropic form i.e.,
u′2 = (2/3)k (Sinhaet al., 2003). The last term is dropped
from the equation for want of an adequate closure approx-
imation. The final model equation for the turbulent energy
flux thus takes the form

∂
∂x

(
u′e′

)
=−c0k

∂u
∂x

− c1u
∂k
∂x

(8)

wherec0 = 2(1− b1)/(3γ), b1 = 0.4+0.6exp(2(1−M1))
andc1 = 1/(3γ). The first model term in the above equation
generates a positive turbulent energy flux across the shock
wave, while the second term leads to a negative contribution
to the energy flux correlation.

Now consider the differential equation governing the
jump in TKE at the shock is given by (Sinhaet al., 2003)

ρu
∂k
∂x

=−2
3

ρk
∂u
∂x

(1−b1) (9)

Also, from the mean energy conservation equation across
the shock, we can write

u

∣∣∣∣
∂u
∂x

∣∣∣∣=Cp
∂T
∂x

. (10)
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Figure 5. Variation ofu′2e′2 with upstream Mach number
as predicted by (11). Also shown are the corresponding
DNS values extrapolated to shock center and far-field LIA
results. Normalisation as described in figure 2.

Using the above two equations, (8) can be written as

∂
∂x

(
u′e′

)
= cue

(
k
u

)
Cp

∂T
∂x

(11)

wherecue = co−(2/3)c1(1−b1). This equation is compact
with only one modelled term governing the value of energy
flux across the shock. Moreover, similar to conventional
form, the energy flux is expressed in terms of gradient in
mean temperature.

Figure 5 shows the energy flux values as predicted by
(11) for varying upstream Mach numbers. Also shown are
the downstream DNS values of energy flux extrapolated to
the shock center and the far-field LIA results.u′e′ attains a
value of zero asM1 → 1 and saturates to a positive limiting
value at high Mach numbers similar to the DNS and LIA
results. A good match is seen with the LIA results, and the
model slightly overpredicts as compared to the DNS data.

The acoustic mode is dominant in the region just be-
hind the shock (Quadroset al., 2015). The decay of the
energy flux following the positive peak is largely affected
by this mode. This decay can be modelled in terms of the
dissipation length scaleLε = k(3/2)/ε, which is representa-
tive of the large acoustic scales in the turbulence field. The
full transport equation for energy flux takes the following
form

∂
∂x

(
u′e′

)
= cue

(
k
u

)
Cp

∂T
∂x

− c2
u′e′

Lε
(12)

wherec2 = 0.3+3exp(1−M1) is a Mach number depen-
dent modelling constant which is found to match the DNS
data well.

Figure 6 shows the streamwise variation of energy flux
for the case ofM1 = 1.87 obtained by numerically integrat-
ing (12). The shock is located atx = 0 and the correspond-
ing DNS mean shock thickness is shown using two verti-
cal lines. The model predicts a zero value of energy flux
upstream of the shock with a peak positive value obtained

x/Lε
0 0.5 1 1.5 2

0

0.2

0.4

M1=1.87

Figure 6. Variation ofu′e′ along streamwise direction as
per (12) (line) and DNS (symbol) for the case ofM1 = 1.87.
The vertical lines nearx/Lε = 0 represent the mean shock
thickness. Normalisation as described in figure 2.

across the shock, which matches with the corresponding
DNS trend. The downstream acoustic decay is captured
well qualitatively, with the model slightly underpredicting
the energy flux values along streamwise direction as com-
pared to the DNS data.

3.4 Proposed Algebraic Model
To overcome complexities involved in implementing

an additional differential equation in an existing CFD
solver, we propose an algebraic model for the turbulent en-
ergy flux at the shock as

u′e′ = β
kCv∣∣∣ ∂u
∂x

∣∣∣
∂T
∂x

(13)

This form is similar to the realizablity constraint shown in
(3) with β here as an unknown modelling parameter. Using
(10), the above equation can be written as

u′e′ =
βku

γ
, (14)

where the turbulent energy correlation is seen to be pro-
portional to the turbulent kinetic energy. This is physically
consistent with linear theory results that show all correla-
tions generated across the shock to be directly proportional
to the upstream TKE.

Further, the normalised expression for energy flux can
be written as

u′e′|Norm. =
u′e′

Ru1T 2
k1
u2

1

. (15)

Using (14) with the upstream values ofk andU along with
(15), the expression can be simplified to

u′e′|Norm. = β
M2

1
Tr

, (16)
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Figure 7. Variation ofu′2e′2 with upstream Mach number
as per new algebraic formulation. Also seen are the DNS
values of energy flux extrapolated to the shock center and
the far-field LIA results.

whereTr is the ratio between the downstream and the up-
stream mean temperature. In the high Mach number regime,
this ratio is proportional toM2

1, and the above expression
saturates to a limiting value

u′e′|Norm. = β
(γ +1)2

2γ(γ −1)
. (17)

A similar trend is seen in both the DNS and LIA results
at high Mach numbers as explained earlier in figure 2. In
order to find out the value of modelling parameterβ , we
equate (17) to the LIA far-field limiting value of 1.38.This
gives a value ofβ = 0.27 for γ = 1.4. However, in the limit
of M1 → 1, the energy flux attains this value ofβ which is
physically incorrect. On the contrary, the energy flux pre-
dicted by the conventional model in theM1 → 1 limit is
zero (asu′e′ is proportional to the mean temperature gradi-
ent) which is consistent with the DNS and LIA predictions.
We therefore propose a low Mach number correction of the
form

β ′ = (1− e1−M1)β , (18)

which yieldsβ ′ = 0 asM1 → 1 andβ ′ → β asM1 → ∞.
Figure 7 shows the model predictions of energy flux for

a range of upstream Mach numbers. Also shown in the fig-
ure are the downstream DNS values of energy flux extrapo-
lated to the shock center and the far-field LIA values. The
model matches well with DNS forM1 < 2, and for higher
Mach numbers, it is close to LIA and slightly overpredicts
the DNS values.

4 CONCLUSION
In this paper, we look at various modelling strategies

to predict the turbulent energy flux generated in a canon-

ical shock-turbulence interaction. Application of conven-
tional k− ε models based on gradient diffusion hypothesis
yields large negative value of energy flux in the shock re-
gion, which rises drastically with increasing Mach numbers.
These values are much higher in magnitude than the post-
shock DNS predictions which yield a low positive energy
flux. Realizable model also predicts peak negative values
of the energy flux in the shock region but the peak value is
limited by the realizability constraint. A differential equa-
tion model based on linear interaction analysis is formulated
that provides a good estimate of turbulent energy flux gen-
erated across the shock as well as the downstream acoustic
decay. Finally, for its ease of implementation, an algebraic
model is developed based on linear theory, and it gives a
good match for amplification in energy flux across the shock
for varying Mach numbers.
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