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ABSTRACT
Friction drag is reduced in a two-dimensional (2D)

boundary-layer flow by delaying the laminar-to-turbulence
transition. A localised forcing in the wall region is used to
attenuate the growing 3D disturbances that eventually trig-
ger the turbulent regime farther downstream. An adaptive
filtered-X least-mean-squared (FXLMS) algorithm is used
to process the information of the flow gathered from two
rows of surface hot-wires sensors and compute the forcing,
performed by a row of plasma actuators. LES simulations
are used to evaluate and analyze the performance of the de-
scribed control strategy: in particular, a study on the stream-
wise position of the sensor and an actual transition delay
scenario are presented.

1 INTRODUCTION
Being able to reduce the friction drag in boundary-

layer flows may reduce the energy and fuel consumption re-
quired for transportation, such as trains and airplanes. Since
the laminar state is characterized by a smaller friction drag
than the turbulent one, avoiding or delaying the laminar-
to-turbulence transition will reduce the overall drag. In a
low-turbulence environment, the transition is dominated by
local instabilities of the flow – Tollmien-Schlichting waves
– that exponentially grow, eventually breakdown and lead
to turbulence (Saric et al., 2002).

Reactive control technique have been studied in order
to delay the laminar-to-turbulence transition (Sturzebecher
& Nitsche, 2003; Lundell, 2007; Bagheri & Henningson,
2011). In particular, the work by Semeraro et al. (2013)
showed that is possible to control a finite-amplitude single
wave-packet by using model-based control techniques. Al-
though a clear transition to turbulence was observed in the
uncontrolled case, a real disturbance environment is more
complex and many 3D disturbances interact with each other.
In this work, instead, a a complex 3D random pattern of
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Figure 1. Control set-up. Random 3D disturbances are
generated by a row of localised independent forcings d. The
measurements from the sensors y and z are used by an adap-
tive FXLMS algorithm to compute the actuation signal for
the actuators u in order to reduce the amplitude of the de-
tected disturbances.

disturbances is generated by using a span-wise row of inde-
pendent random forcings d (Figure 1). Each input is has a
localised spatial support inside the boundary-layer.

The recent numerical and experimental studies by Fab-
biane et al. (2015) highlighted that a model-based ap-
proach can be sensitive to model inaccuracies when com-
pared to adaptive-control techniques. Hence, an adaptive
multiple-input-multiple-output (MIMO) FXLMS compen-
sator is considered in this work: this algorithm is an ex-
tension of the single-input-single-output (SISO) algorithm
used by Sturzebecher & Nitsche (2003) in their experimen-
tal investigation on 2D disturbance control.

2 CONTROL STRATEGY
The control action is performed by a row of localized,

equispaced actuators forcing the flow in the proximity of

1

June 30 - July 3, 2015 Melbourne, Australia

9
5B-3



the wall. Their action ul(t) is computed based on the mea-
surements ym(t) by a row of sensors upstream the actuators:
for this set-up, the number of sensors is equal to the number
of actuators and they are positioned aligned respect the flow
direction (Figure 2).

We assume a linear control law and an equal number
(M) of sensors and actuators. As a consequnce, the number
of transfer function between the M sensors ym and the actu-
ators ul is M2. This imposes a computation constraint when
M is large, which is the case when covering a large spanwise
width with the controller. However, since the flow is span-
wise homogeneous, the same transfer Km function from all
the sensors yl to one actuator is replicated for each actua-
tor um, as shown in Figure 2. This assumption reduces the
number of transfer function to be designed from M2 to M.
Hence, the finite impulse response (FIR) filter representa-
tion of the control law reads

ul(n) = ∑
m

∑
j

Km( j)ym+l(n− j) ∀l (1)

where ul(n) and yl(n) are the time-discrete control and mea-
surement signals, Km( j) ∈ RM×N is the convolution kernel
of the compensator and N ∆t is the time-horizon of the FIR
filter (Aström & Wittenmark, 1995; Fabbiane et al., 2014).

The design of the compensator consists in computing
the time-discrete convolution kernel Km( j). In this work,
A MIMO version of the FXLMS algorithm introduced by
Sturzebecher & Nitsche (2003) is used to dynamically de-
sign the compensator. The algorithm aims to minimise the
sum of the squared measurement signals zl(n):

min
Km

(
∑
l

z2
l (n)

)
. (2)

Hence the kernel is updated via a steepest descend algo-
rithm at each time step:

Km(i|n+1) = Km(i|n)−µ λm(i|n). (3)

where the descend direction λm( j|n) is given by

λm(i|n) =
∂
(
∑l z2

l (n)
)

∂Km(i)
= 2 ∑

l
zl(n)

∂ zl(n)
∂Km(i)

. (4)

In order to compute the derivative in the previous equation,
it is necessary to explicit z(n) dependencies:

zl(n) = ∑
r

∑
j

Pzd,r( j) dr+l(n− j)+∑
r

∑
j

Pzu,r( j) ur+l(n− j) =

= [· · · ]+∑
r

∑
j

Pzu,r( j) ∑
m

∑
i

Km(i) ym+r+l(n− j− i) =

= [· · · ]+∑
m

∑
i

Km(i) ∑
r

∑
j

Pzu,r( j) yr+m+l(n− j− i) =

= [· · · ]+∑
m

∑
i

Km(i) fm+l(n− i),

(5)

where the same span-wise homogeneity assumption has
been made for the plant kernels Pzd,r( j) and Pzu,r( j) that
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Figure 2. Compensator structure. The action of each ac-
tuator um is computed by filtering the signals from all the
sensor yl via a linear filter Km. An adaptive FXLMS filter is
responsible of computing the Km response in order to maxi-
mize in real time the control performances measured by the
error sensors zl .

represent the transfer functions dr→ zl and ur→ zl respec-
tively. Hence the descend direction reads

λm(i|n) = 2∑
l

zl(n)
∂ zl(n)
∂Km(i)

= 2 ∑
l

zl(n) fm+l(n− i). (6)

Note that this method is not completely model free as
Pl+m(i) is needed to compute fl(n).

3 DNS/LES SIMULATIONS
In order to analyze the control algorithm, LES simula-

tions are performed using a pseudo-spectral code (Chevalier
et al., 2007). Periodicity is assumed in the spanwise and
streamwise directions: a fringe-region is placed in the last
20% of the domain to enforce the periodicity in the stream-
wise direction. The flow is expanded over 1536× 384
Fourier modes in the XZ plane and 101 Chebyshev’s poly-
nomials in the wall-normal direction. The computational
domain Ω extends for [0,2000)× [0,30]× [−125,125) in
the X , Y and Z direction. All the spatial dimensions are
non-dimensionalized by the boundary-layer displacement
thickness in the beginning of the domain δ0. The resulting
Reynolds number is defined as Re =Uδ0/ν = 1000, where
U is the free-stream velocity and ν the kinematic viscosity.
For the time-integration a Crank-Nicholson/Runge-Kutta
method is used with a constant time-step ∆t = 0.4δ0/U .

Disturbance sources in the beginning of the domain
are modelled according to Semeraro et al. (2013), while
plasma actuators are considered to perform the control ac-
tion and modelled via a volume forcing (Kriegseis et al.,
2013). In this set-up, 25 equispaced objects for each row of
sensors/actuators/disturbances are considered with a span-
wise separation ∆Z = 10, accordingly to the work by (Se-
meraro et al., 2013).

4 SENSORS POSITION
The relative streamwise position between sensors and

actuators has been studied via linear DNS simulations on
a reduction of the original domain, (X ,Y,Z) ∈ [0,1000)×
[0,30]× [−75,75). The spanwise separation between sen-
sors/actuators ∆Z = 10 is maintained, resulting in 15 objects
for each sensors/actuators row. The actuators row is kept at
Xu = 400: reference and errors sensors are moved instead
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Figure 3. Reference sensor position.
√〈

∑l z2
l

〉
is reported

as a function of the reference-sensor streamwise position
Xy. The reported values are normalised with respect to the
uncontrolled case.

in order to maximize the performance of the control action.
The root-mean-square of the error sensor is used as perfor-
mance indicator: the closer to zero the more effective the
disturbance attenuation.

Figure 5 report the performance of the control when
the reference sensor (ym) are moved, while the error sensors
(zl) are fixed at Xz = 700. The control action appears not
to be particularly sensitive to the position of the reference
sensor Xy. However, it is interesting the effect that Xy has on
the control kernel: in Figure 4 the control kernel are shown
for the tested yl positions.

Each line indicates the transfer function Km( j) between
the a generic actuator ul and the sensor ym+l that is posi-
tioned at m∆Z respect to the actuator itself (Figure 2). The
thicker line in each sub-figure shows the transfer function
K0( j), i.e. the connection ym→ um between the sensor and
the actuator positioned at the same Z location.

All kernels present a compact support along the span-
wise direction: as the index m increases the magnitude
of the transfer functions decays and it becomes zero for
m =±5. This means that the action of one actuator depends
only on a limited number of sensors, between Z =−50 and
Z = 50 with respect to the actuator position. This permits
to reduce the number of transfer functions that have to be
calculated and, as a consequence, the compensator compu-
tational cost.

Interestingly, all kernels share the same spanwise sup-
port and structure. The effect of the relative position Xu−Xy
seems to be reduced to a backward shift in time of the com-
pensator response.This behaviour of the compensator re-
sponse is due to the convective nature of this type of in-
stabilities (Schmid & Henningson, 2001): time-delays, in
fact, are a peculiar feature of the control of this type of
flows. If we consider K0( j) – i.e. the connection between
the sensor and the actuator positioned at the same Z loca-
tion – in Figure 4(a), the maximum of the transfer function
occurs at j ∆t ≈ 250, which corresponds to the time that a
TS-wavepacket takes to travel from the sensor to the actua-
tor location. As the reference sensor is moved downstream
(Figure 4(b)-(d)), this time-delay is reduced and an increas-
ing part of the original structure is not present any more.

In Figure 5 the positioning of the error sensors Xz is
addressed. The control performances measured by the error
sensors zl improves as the sensors row is moved upstream,
i.e. towards the actuator (blue circles). This result, however,
can be misleading: the red squares report the performance
of the control action measured by a fixed row of sensors rl
at Xr = 750. From this, it is clear that the compensator is
performing worse as the error sensors row is moved closer

(a) Xy = 300 Xz = 700

(b) Xy = 350 Xz = 700

(c) Xy = 375 Xz = 700

Figure 4. Convolution kernels Km(i) computed by
FXLMS algorithm for different streamwise positions of the
reference sensors Xy. The thick line indicates K0(i), i.e. the
connection between the actuator and the sensor at the same
Z location.
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Figure 5. Error sensor position. The blue circles report√〈
∑l z2

l

〉
as a function of the reference-sensor streamwise

position Xy. The red dots report the same quantity for an
additional fixed row of sensors (performance sensors) posi-
tioned at X = 750. The reported values are normalised with
respect to the uncontrolled case.
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Figure 6. Transition delay. In (a) and (b) the skin friction fluctuations respect to the laminar solution are shown at t = 4000 δ0
U .

In the uncontrolled case (a) the disturbances grow and lead to transition to turbulent state in the end of the domain. In the
controlled case (b), instead, the disturbances are attenuated by actuators action and transition is delayed, see also (c). The top
axis reports ReX =

U (X−XLE )
ν , where XLE is the leading-edge position.

to the actuator. Hence, in the linear-perturbation limit, the
better performances are given by the farthest position of the
error sensor. However, if finite amplitude disturbances are
considered, one may want to place as near as possible to the
actuator in order lo limit the non-linear effects: a balance
between the two concurring necessities.

5 TRANSITION DELAY
According to the results of the previous section, the

reference sensor ym are positioned at Xy = 300 and the error
sensors zl at Xz = 700, Figure 6(b). The perturbation is pro-
duced by 25 localised disturbances fed by 25 independent
white noise signals dm(t) with variance 1/3 ·10−3 each.

The transition delay performed by the compensator is
shown in Figure 6. The friction-trace of the TS-waves gen-
erated by the disturbance source in the beginning of the do-
main is visible in Figure 6(a-b), where the skin instanta-
neous friction fluctuations respect to the laminar solution
are reported. The disturbances exponentially grow while
travelling downstream and lead to transition in the uncon-
trolled case. In Figure 6(b) it can bee seen that the com-
pensator is able to attenuate those disturbances and move
the transition point out of the computational box. In partic-
ular, friction fluctuations decay downstream the actuators,
they reach a minimum amplitude where error sensor zl are
positioned and they grow again without triggering the tran-
sition. This can be seen also in Figure 6(c) where the span-
wise average of the streamwise stress is shown: the area be-
tween the controlled and uncontrolled friction curves gives
directly the drag-save per units of spanwise length that is
obtained by applying the control.

6 CONCLUSIONS
The employed adaptive control technique is able to de-

lay the transition point in a realistic scenario, as shown by
the results reported in this short overview.

Some interesting features of the controller have been
highlighted, e.g. the compact support of the kernel in the
spanwise direction. As shown in Figure 4, each actuator
action is dependent on a limited number of reference sen-
sor along the spanwise direction. This results permits to
limit the number of transfer functions that are needed to ef-
fectively perform the control action and, hence, reduce the
computational cost of the algorithm.

The results presented in this abstract are characterized
by a linear regime in the region of the flow where the con-
trol action takes place. However, the adaptive nature of the
FXLMS algorithm may permit the compensator to success-
fully operate for higher amplitude disturbances.

Moreover, in contrast to the model-based approach by
Semeraro et al. (2013), the compensator design requires
no models of disturbance environment; the only modelling
required is the input/output relation between the actuators
um and the error sensors zl . The reduced modelling and
the adaptivity of this type of compensator make this con-
trol strategy suitable for realistic applications, where one
lacks exact knowledge flow conditions, as shown by Fab-
biane et al. (2015).
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