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ABSTRACT
This paper employs the theoretical framework devel-

oped by Luhar et al. (2015, J. Fluid Mech., 768, 415-441)
to consider the design of compliant walls for turbulent skin
friction reduction. Specifically, the effects of simple spring-
damper walls are contrasted with the effects of more com-
plex walls incorporating tension, stiffness and anisotropy.
Despite the differing physical responses, all the walls tested
exhibit two important common features. First, the effect of
the walls (positive or negative) is greatest at conditions close
to resonance, with sharp transitions in performance across
the resonant frequency or phase speed. In general, turbu-
lent flow structures with frequencies (or phase speeds) be-
low resonance are further amplified, while higher-frequency
structures are suppressed. Compliant walls are also pre-
dicted to have a more pronounced effect on the slower-
moving low frequency structures because such structures
generally have larger wall-pressure signatures. Second,
two-dimensional (spanwise constant) structures are partic-
ularly susceptible to further amplification. This is con-
sistent with previous experiments and simulations, sug-
gesting that mitigating the rise of such two-dimensional
structures is essential to designing performance-improving
walls. The above observations are used to develop specific
design guidelines for compliant walls.

INTRODUCTION
The design of compliant surfaces for turbulent skin

friction reduction has attracted significant attention since
the early experiments of Kramer (1961). However, de-
spite many experimental (e.g. Bushnell et al., 1977; Gad-
el-Hak et al., 1984; Lee et al., 1993; Choi et al., 1997) and
numerical (e.g. Endo & Himeno, 2002; Xu et al., 2003;
Kim & Choi, 2014) efforts, there are few definitive results.
Broadly, the direct numerical simulations (DNS) and ex-
periments both show that softer surfaces often give rise
to energetic two-dimensional (i.e. spanwise constant) wave-
like motions, which can cause a substantial increase in skin
friction. Harder surfaces appear to have little impact on

the flow, although some qualitative flow visualization ex-
periments hint at an intermittent relaminarization-like phe-
nomenon (Lee et al., 1993).

One of the major challenges associated with develop-
ing performance-enhancing surfaces is the extent of the pa-
rameter space to be explored. Even the simplest spring-
damper walls considered in DNS depend on three inde-
pendent parameters: a mass ratio, a spring constant and
a damping coefficient. The viscoelastic layers tested fre-
quently in experiments (Gad-el-Hak et al., 1984; Lee et al.,
1993) depend on at least five different parameters: two elas-
tic constants which determine the shear- and longitudinal
wave speeds, the mass density, a viscous relaxation time,
and the layer thickness. Clearly, independent evaluation
and optimization of these parameters in DNS or experi-
ment is impractical, indicating the need for a computation-
ally inexpensive theoretical framework to study turbulence-
compliant wall interactions.

In an effort to address this need, Luhar et al. (2015)
recently extended the resolvent formulation proposed by
McKeon & Sharma (2010). Under this formulation, the tur-
bulent velocity field is expressed as a superposition of prop-
agating modes, identified via a gain-based decomposition
of the Navier-Stokes equations (NSE). Compliant surfaces
are introduced via changes in the kinematic and dynamic
boundary conditions. In particular, a complex wall admit-
tance is used to define the relationship between the pressure
and wall-normal velocity at the wall. This change in the
boundary conditions leads to a change in the gain and struc-
ture of the modes, whereby a reduction in gain is interpreted
as mode suppression.

Luhar et al. (2015) show that this approach predicts
the amplification of the quasi two-dimensional structures
observed recently in DNS (Kim & Choi, 2014) with min-
imal computation. Further, the formulation also enables
an optimization of surface properties (i.e. wall admittance)
to suppress flow structures known to be energetic in wall
turbulence. This blind optimization suggests that negative-
damping walls are required to suppress the near-wall (NW)
cycle, identified by various researchers as essential to con-
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trolling wall turbulence (e.g. Bushnell et al., 1977). How-
ever, walls with positive damping could be effective against
the so-called superstructures or very-large-scale motions
(VLSMs) that appear at high Reynolds number. Unfor-
tunately, Luhar et al. (2015) show that the optimal walls
identified via this procedure also have negative effects
elsewhere in spectral space, with slow-moving spanwise-
constant structures particularly susceptible to further ampli-
fication.

The purpose of the present paper is to build on the
above findings and evaluate the effect of varying wall mod-
els in greater detail, looking closely at the sensitivity to two-
dimensional structures. While Luhar et al. (2015) focused
primarily on a spring-damper wall, this paper introduces the
effects of tension, stiffness and anisotropy. Further, we also
consider the effects of varying mass ratios to contrast aero-
dynamic and hydrodynamic applications.

THEORY
Resolvent Formulation

The resolvent formulation considers the turbulent ve-
locity field, u, to be a superposition of highly amplified
velocity structures, or modes, identified via a gain-based
decomposition of the Fourier-transformed Navier-Stokes
equations (NSE). For each wavenumber-frequency combi-
nation k = (κx,κz,c = ω/κx), where κx and κz are the
streamwise and spanwise wavenumbers, ω is the frequency
and c is the phase speed, the NSE are interpreted as a
forcing-response system1:

[
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]
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−iω
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0

]
fk = Hkfk

(1)

The nonlinear terms are interpreted as the forcing to the sys-
tem, (u ·∇u)k = fk(y)exp i(κxx+κzz−ωt), and the resol-
vent operator, Hk, maps this forcing to the velocity and
pressure responses, e.g. ûk = uk(y)exp i(κxx+κzz−ωt).
Here, x, y and z are the streamwise, wall-normal and span-
wise coordinates, respectively, and t is time. A subscript
k denotes an individual Fourier component. In Eq. 1, ∇k
and ∇T

k represent the Fourier-transformed gradient and di-
vergence operators, and Lk is the linearized Navier-Stokes
operator.

A singular value decomposition (SVD) of the dis-
cretized resolvent operator Hk = ∑m ψm(y)σmφ∗m(y) yields
a set of orthonormal forcing (φm) and response (ψm) modes,
ordered based on the input-output gain (σ1 > σ2 > σm >
...). Forcing in the direction of the mth forcing mode with
unit amplitude results in a response in the direction of the
mth response mode amplified by factor σm. Thus, forcing
fk(y)= φ1(y) creates a response [uk(y), pk(y)]T =σ1ψ1(y).
Note that the resolvent operator is scaled prior to perform-
ing the SVD to enforce an L2 norm for the velocity, uk, and
forcing, fk (see Luhar et al., 2015).

In general, for k combinations energetic in natural tur-
bulence, the resolvent operator tends to be low rank. A
limited number of input directions are highly amplified, of-
ten with σ1 � σ2, and so the velocity and pressure fields
can be reasonably approximated by the first response mode

1This paper focuses on turbulent channel flows but the approach
can be generalized to pipe and boundary layer flows as well.

[uk(y), pk(y)]T ∼ ψ1(y). Recent studies show that this
rank-1 approximation captures many of the key features of
wall-bounded turbulent flows, including the emergence of
coherent structures and their footprint in the wall pressure
field (Sharma & McKeon, 2013; Luhar et al., 2014a). Fur-
ther, the rank-1 modes also form useful building blocks for
low-order models of flow control (Luhar et al., 2014b). As a
result, the rest of this paper only considers the first singular
values and modes, dropping the subscript 1 for convenience.

Boundary Conditions
The effect of the compliant wall is introduced by

changing the boundary conditions on velocity and pressure
within the resolvent (Eq. 1) before computing the SVD. As-
suming small wall deformation ηk, the linearized kinematic
boundary conditions on streamwise (uk) and wall-normal
(vk) velocities at the bottom wall (y = 0) become:

vk(0) =−iωηk; uk(0) =−ηk
∂U
∂y

∣∣∣
y=0

(2)

where U is the mean velocity profile. The dynamic bound-
ary condition is expressed as a wall admittance, Y , linking
wall-normal velocity and pressure:

vk(0) = Y pk(0) (3)

Similar boundary conditions apply at the top wall, y = 2
(y is normalized by the channel half-height, h). Though,
for identical walls, the sign of the admittance changes due
to the differing symmetries of the wall-normal velocity and
pressure fields across the centerline. Note that the linearized
boundary conditions and the requirement of a mean veloc-
ity profile are some of the key limitations of the present ap-
proach. These limitations are discussed in greater detail by
Luhar et al. (2015).

The admittance Y dictates the relative phase and am-
plitude of the wall-normal velocity and the pressure at the
wall. As such, it can be used to represent walls of known
material properties. For example, the most commonly used
model for compliant walls involves a tensioned plate sup-
ported on a bed of springs and dampers. For such walls, the
admittance can be expressed as (Xu et al., 2003):

Y =
iω

−Cmω2− iωCd +Cke
(4)

where Cm and Cd are the dimensionless mass ratio and
damping coefficient, and

Cke =Ck +Ct(κ2
x +κ2

z )+Cs(κ4
x +2κ2

x κ2
z +κ4

z ) (5)

is a wavenumber-dependent effective spring constant. The
parameters Ck, Ct and Cs represent the dimensionless spring
constant, tension and flexural rigidity. All of the above pa-
rameters are normalized based on the channel half-height h,
friction velocity uτ and fluid density ρ .
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Table 1. Different walls optimized to suppress resolvent
modes resembling VLSMs. The damping coefficient is
Cd = 0.4688 in all cases.

Case Cm Ck Cs Ct

base 2 510.4 0 0

high Cm 20 5118 0 0

tension 2 0 0 5.053

stiffness 2 0 0.0500 0

anisotr. 2 0 0 Ctx = 288

Ctz = 2.224

Optimal Walls
In addition to evaluating the effects of the wall pa-

rameters individually, the resolvent framework can also be
used to solve the inverse problem: finding an optimal Y
that leads to the most favorable effect on the turbulent
flow structures of interest. Luhar et al. (2015) pursued
this optimization for modes resembling the NW-cycle and
VLSMs at friction Reynolds number Reτ = uτ h/ν = 2000
(ν is the kinematic viscosity). The NW-cycle was rep-
resented by the wavenumber-frequency combination k =
(κx,κz,c+) = (12,120,10) and the VLSMs were repre-
sented by k = (1,10,16). These wavenumbers translate
into structures of streamwise and spanwise wavelength
(λ+

x ,λ+
z ) ≈ (1050,105) and (λ+

x ,λ+
z ) ≈ (12500,1250),

respectively. Optimality was defined in two different
ways: walls that lead to the greatest mode suppression
(i.e. lowest σk) or the largest reduction in the channel-
integrated Reynolds stress contribution from the mode (per
Fukagata et al., 2002). Note that a superscript + denotes
normalization with respect to uτ and ν .

For brevity, this paper focuses on the optimal gain-
reducing wall for modes resembling the VLSMs. A simple
pattern search procedure shows that a wall with admittance
Y = −2.0385− 0.4387i leads to the greatest reduction in
singular value for such modes, with the ratio of compliant to
rigid-wall (null-case) singular values being σkc/σk0 = 0.52.
Note that this optimization is blind to the physical properties
of the compliant walls. For walls characterized by Eq.4-5,
this optimal admittance can be realized through any com-
bination of springs, tension and stiffness. To evaluate how
these factors affect performance, particularly with respect to
the excitation of spanwise-constant modes, we test the dif-
ferent walls listed in Table 1, each of which has admittance
Y =−2.0385−0.4387i for k = (1,10,16).

The base case is the wall evaluated by Luhar et al.
(2015), which represents a simple spring-damper system
such that Cke = Ck and Cm = 2. The high Cm(= 20) case
is similar but requires a larger spring constant to counter-
act the increase in mass ratio. The next two cases in Ta-
ble 1 remove the spring support but introduce the effects
of tension and stiffness, such that Cke = Ct(κ2

x + κ2
z ) and

Cke =Cs(κ4
x +2κ2

x κ2
z +κ4

z ), respectively. The last case in-
troduces the effects of anisotropy through differing stream-
wise and spanwise tension. Despite the physical differ-
ences, all of the walls are resonant just below the mode fre-
quency ω = 16 for κx = 1 and κz = 10. Specifically, the
resonant frequency is ωr = ωn

√
1−2ζ 2 = 15.97, where

ωn =
√

Cke/Cm is the undamped natural frequency of the
wall and ζ =Cd/(2

√
CkeCm) is the damping factor.

RESULTS
Effect of Mass Ratio

One of the key differences between aerodynamic and
hydrodynamic flows over compliant walls is the mass ratio,
which is determined by the ratio of the solid density to the
fluid density. While Cm ∼ O(1) is appropriate for hydro-
dynamic applications, it is expected that Cm ∼ O(103) for
aerodynamic applications. A high mass ratio translates into
a much smaller wall response to fluid pressure perturbations
away from resonance, which in turn means that the wall
does not significantly influence the flow structures. This is
illustrated by the base case and high Cm results shown in
Fig. 1. The spectral region over which the compliant wall
has a strong influence on the singular values (positive or
negative) shrinks significantly as the mass ratio is increased
from Cm = 2 (Fig. 1a) to Cm = 20 (Fig. 1b). As an ex-
ample, for κx = 10 the base case wall affects modes with
speeds up to c+ ≈ 8, while the Cm = 20 wall only affects
modes with speeds up to c+ ≈ 3. Note that the region of
influence in both cases is centered approximately around
the resonant frequency, where the magnitude of the admit-
tance |Y | peaks. In general, the compliant wall seems to
have a positive influence (suppression) on modes with fre-
quencies higher than the resonant frequency (i.e. above the
solid black line) and a negative effect on modes with lower
frequencies.

Also shown in Fig. 1 are isocontours of the magnitude
of the wall admittance |Y | (dashed lines) at level 0.01. A
comparison of Fig. 1a and Fig. 1b shows that the region
enclosed by these isocontours reduces rapidly with increas-
ing mass ratio. More quantitatively, the half-power band-
width of a spring-damper system is expected to scale as
ζ ωn ∼C−1

m for ζ � 1. So the ten-fold increase in the mass-
ratio translates into a roughly ten-fold decrease in the fre-
quency bandwidth of the wall. This bandwidth would de-
crease even further for Cm ∼ O(103), suggesting that com-
pliant walls are unlikely to be practical for aerodynamic
applications without the development of novel lightweight
materials.

Note that the decrease in the spectral influence of the
compliant wall is roughly consistent with the decrease in
the wall bandwidth. However, there are regions where the
wall influences the flow despite low |Y | (e.g. for very slow
modes with c+ < 1) and where the wall does not have an
appreciable effect even at resonance (e.g. for faster modes
with c+ > 17). This is because the influence of the wall is
determined both by the admittance as well as the magnitude
of the wall-pressure fluctuations. In general, the magnitude
of the wall pressure fields associated with the modes de-
creases with increasing mode speed c+ (i.e. as the modes
move further away from the wall, see Luhar et al., 2014a),
and so slower modes are likely to interact with compliant
walls to a larger extent.

Comparing Springs, Tension and Stiffness
Next we compare the effects of a compliant wall on a

spring support with a tensioned membrane and a stiff plate.
For the simple spring-damper system, the fluid-structure in-
teractions are dependent solely on frequency. Moreover,
the wall does not communicate in the streamwise and span-
wise directions, which means that it cannot support wave
propagation. In contrast, tensioned membranes and stiff
plates have a wavenumber-dependent effective spring con-
stant (Eq. 5) and can support wave propagation. This
means that the three different walls have varying effects
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Figure 1. Shaded contours showing the ratio of compliant wall to null-case singular values, σkc/σk0, for the base case (a) and
high Cm (b) walls listed in Table 1. Blue regions denote mode suppression while red regions indicate further amplification. The
solid black lines indicate the resonant frequency. The dashed lines represent isocontours of the magnitude of the admittance |Y |
at level 0.01. All results correspond to κz = 10.

Figure 2. Shaded contours showing the singular value ratio σkc/σk0 as a function of streamwise wavenumber and mode speed.
Blue regions denote mode suppression and red regions denote amplification. Plots (a,d), (b,e) and (d,f) represent the base case,
tensioned wall and stiff wall listed in Table 1, respectively. The dashed contours indicate the magnitude of the singular values
σkc over the compliant walls. The solid lines show the resonant frequency.

across spectral space, despite being optimized to suppress
the VLSM-type modes.

The above effects are best understood in terms of the
resonant frequency ωr. Like the results shown in the pre-
vious section, for κz = 10, modes with frequencies below
the resonant frequency are further amplified by the compli-
ant walls while modes with higher frequencies are generally
suppressed (Fig. 2a-c). However, the resonant frequency

(solid black lines) varies substantially across the three dif-
ferent cases. For the basic spring-damper wall, the reso-
nant frequency is constant, and so the effect of the wall
is centered around modes with c+κx = ωr, or c+ ∼ κ−1

x
(Fig. 2a). For the tensioned membrane and stiff plate, the
response is centered around a similarly decreasing function
c+ = f (κx) for κx� κz(= 10) (Fig. 2b,c). This is because
the effective spring constant is dominated by the spanwise
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wavenumber dependence for κx� κz, leading to essentially
constant Cke ≈ Ctκ2

z ≈ 505 and Cke ≈ Csκ4
z ≈ 500 for the

results shown in Fig. 2b,c. However, as κx � κz, the ef-
fective spring constant for the walls is dominated by the
streamwise dependences Cke≈Ctκ2

x and Cke≈Csκ4
x , which

translates into resonant frequencies ωr ≈ κx
√

Ct/Cm and
ωr ≈ κ2

x
√

Cs/Cm. This means that the maximum admit-
tance is found at near-constant c+≈

√
Ct/Cm = 1.59 for the

tensioned membrane (Fig. 2b) and is an increasing function
c+ = f (κx) for the stiff plate (Fig. 2c).

Figures 2d-f show that all three walls also lead to sig-
nificant amplification of two-dimensional (κz = 0) struc-
tures, which is consistent with previous experiments and
DNS. All three cases exhibit a repeating amplification-
suppression-amplification pattern with increasing mode
speed, at least for κx < 5. For example, at κx = 1, modes
with c+ < 10 are further amplified, modes with c+ ≈ 10 to
c+ ≈ 16 are suppressed and modes with c+ > 16 are again
further amplified. The speeds at which these transitions oc-
cur generally decrease with increasing κx, although wall
resonance plays a role as well (Fig. 2d, solid black line).
In general, there appear to be two classes of mode that are
further amplified over compliant walls. Long, slow-moving
modes with κx < 5 and c+ < 7 are amplified regardless of
the wall properties, at least for the walls tested. The sec-
ond class of modes that is further amplified is linked to
wall resonance and is generally of smaller wavelength (see
e.g. κx ≈ 10 in Fig. 2e,f).

Note once again that the resonant frequency, and hence
wave speed, varies significantly across the three differ-
ent cases. The wave speed corresponding to resonance
is a decreasing function of κx for the spring-damper wall
(Fig. 2d), constant for the tensioned membrane (Fig. 2e,
c+ ≈

√
Ct/Cm, i.e. the free-wave speed of the wall), and

an increasing function of κx for the stiff plate (Fig. 2f).

Anisotropy and Wall-based Instability
Finally, we introduce the effects of anisotropy by test-

ing the effects of a wall with different streamwise and span-
wise tension coefficients Ctx = 288 and Ctz = 2.224, so that
Cke = Ctxκ2

x +Ctzκ2
z (Eq. 5). This anisotropy changes the

resonant frequency of the wall (Fig. 3a,b) and the free wave
speed is now c+ ≈

√
Ctx/Cm = 12. However, the trends ob-

served in the previous section remain. In particular, there
is a sharp transition in performance across the resonant
frequency for the κz = 10 modes, and spanwise-constant
(κz = 0) modes are susceptible to significant further amplifi-
cation. There are two classes of highly-amplified spanwise-
constant modes: long, slow-moving structures and shorter
(e.g. κx = 1,c+ = 1, marked c in Fig. 3b), faster structures
moving at close to the free wave speed (e.g. κx ≈ 4,c+ = 11,
marked d in Fig. 3b).

The above predictions are broadly consistent with
the observations of Gad-el-Hak et al. (1984); Gad-el-Hak
(1986), who showed that elastic and viscoelastic layers
under turbulent boundary layers gave rise to two distinct
classes of surfaces waves: the first, termed static diver-
gence, were very long, slow-moving (nearly static) struc-
tures, while the second class of surface waves had shorter
wavelengths and faster phase speeds, comparable to the free
shear wave speed of the layer. The experiments suggest that
the static-divergence waves appear preferentially for vis-
coelastic coatings while the faster waves appear preferen-
tially for elastic layers. This effect of the viscosity (i.e. the
damping in our model) remains to be explored.

Figures 3c,d show the structure associated with the two
highly-amplified modes identified in Fig. 3b. Although the
modes have vastly different wavelengths and speeds, the
overall structure is similar. Specifically, the streamwise ve-
locities associated with the modes are confined to a very
small layer close to the wall, above which the velocities are
primarily in the up-down wall-normal direction. Further,
the magnitude of the wall-pressure field is largest over sur-
face troughs and smallest over surface peaks, i.e. high pres-
sures coincide with downward deflections and vice versa, as
expected physically.

CONCLUSION
The results presented in this paper suggest two impor-

tant guidelines for the design of compliant surfaces to re-
duce turbulent skin friction.

First, the sharp transitions in performance across the
resonant frequency of the wall suggest that compliant walls
must be slightly detuned and resonant at frequencies below
the spectral region of interest. Although Luhar et al. (2015)
employed single wavenumber-frequency combinations as
models for VLSMs and the NW-cycle, in reality these struc-
tures occupy a region in spectral space. As such, designing a
compliant wall with sharp transition in performance within
this region is unlikely to be effective. Note that this tran-
sition in performance may be linked to the change in the
pressure-wall deflection phase relationship across the natu-
ral frequency, i.e. as the imaginary component of Y changes
sign.

Second, the susceptibility to spanwise-constant struc-
tures must be minimized. This is likely to be difficult given
that most natural materials tend to serve as low-pass filters.
That is, the effect spring constant generally decreases with
decreasing κz. One potential solution is to employ walls that
are in spanwise compression, Ctz < 0, which would lead to
a larger effective spring constant for κz = 0. Other possi-
bilities include periodic spanwise breaks in the compliant
material to disperse the spanwise-constant structures, or the
use of mechanical metamaterials which ensure that the cur-
vatures in the streamwise and spanwise directions are cou-
pled, i.e. such that surface waves with κz = 0 and κx 6= 0
cannot be generated.
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