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ABSTRACT
This paper considers the estimation of a flow field us-

ing only information from a single time-resolved sensor.
We call this the estimation problem, and it is closely related
to the feedback control problem since, if one wishes to con-
trol a flow with limited measurements available, it is impor-
tant that one can estimate what is happening in other parts
of the flow. Tackling this problem is important not only for
feedback control purposes, but also for any situation where
one wishes to estimate a flow field using limited measure-
ments. The estimation is performed using a Kalman filter,
an estimation tool which is widely used in guidance, nav-
igation and control, as well as in signal processing. The
Kalman filter uses dynamic (i.e. time-resolved) measure-
ments, coupled with a model of a system, to estimate a
system’s full state. There are two parts to the study. The
first part considers the estimation problem for the flow past
a cylinder at low Reynolds numbers. We look at the accu-
racy of the estimate when the single sensor measurement is
i) a single velocity sensor in the wake (whose location can
vary); and ii) the lift force on the cylinder. The second part
is concerned with how well the estimation problem can be
performed. To do this we consider the Ginzburg-Landau
equation, a well-known model system which displays many
of the phenomena seen in fluid systems. This allows us to
quantify the efficacy of the estimator as the measurement
type and the disturbance characteristics vary.

INTRODUCTION
The von Kármán vortex street in the two-dimensional

cylinder wake first appears at a Reynolds number near 49
(Williamson, 1996). This vortex street gives rise to in-
creased drag and unsteady lift forces. The advantages of
suppressing these vortices is therefore clear, and the two-
dimensional cylinder wake has become a canonical problem
in flow control.

This paper aims to address a research question which is
closely related to the control problem: the estimation prob-
lem. Clearly if one wishes to control a fluid flow using feed-
back, then one needs to be able to measure salient quantities
for that flow. In an ideal world, one would have access to
all flow quantities (for example velocities and pressures) at
all points in the flow, and in simulations one can do this.
In experiments, however, we are limited to those quantities
that can actually be measured—and the less intrusive that
measurement, the better. This poses a problem: We want
to control the flow as a whole, and yet we cannot measure
most of the flow.

In previous studies on flow control, the estimation
problem is commonly addressed using Linear Stochastic

Estimation (LSE), which generates a correlation database
between different points in the flow (Adrian et al., 1989;
Guezennec, 1989). One then uses this correlation database
to estimate the flow at a particular point using known, mea-
sured data at another point. Linear Stochastic Estimation is
a useful tool and has been used for a range of flows. How-
ever, LSE is not a dynamic estimation technique: it makes
use only of instantaneous measurements (i.e. a ‘snapshot’
of the available measurements), but does not make use of
the time history of those measurements.

The utility of time-resolved, dynamic measurements
for estimation is well-understood and often exploited in
other fields. The Kalman filter (Kalman, 1960)—which is
widely used in guidance, navigation and control, as well as
in signal processing—is a wonderful example of how dy-
namic measurements, when coupled with a model of a sys-
tem, can be used to estimate the system’s full state (which
may be of much larger dimension than the measurements
available). The Kalman filter uses a linear model of the
system to be estimated, but nonlinear extensions have been
developed, including the extended Kalman filter (Anderson
& Moore, 1979) and the unscented Kalman filter (Julier
& Uhlmann, 2004). The Kalman filter has been applied
to problems in fluid mechanics in a small number of pre-
vious studies including low-Reynolds-number turbulence
(Hœpffner et al., 2005); compressible cavity oscillations
(Rowley & Juttijudata, 2005) and a transitional flat-plate
boundary layer (Guzmán Iñigo et al., 2014).

This paper looks at estimating an entire flow field us-
ing only information from a single time-resolved sensor for
two systems: the flow past a cylinder at Re = 45; and the
Ginzburg-Landau equation (to be described). The estima-
tion is performed using a Kalman filter. Tackling this prob-
lem is important not only for feedback control purposes, but
also for any situation where one wishes to estimate an entire
or partial flow field using limited measurements.

The paper is organized as follows. The estimation
problem is first stated, and the structure of a dynamic es-
timator is explained. Dynamic estimation is then applied to
the flow past a cylinder at a Reynolds number of 45. Excel-
lent results are seen—both when a single velocity measure-
ment in the wake is used, and when only the lift force on the
cylinder is measured. This is followed by the application
of a dynamic estimator to the Ginzburg-Landau equation, a
relatively well-studied model system which displays many
of the phenomena seen in fluid systems. This allows us to
precisely quantify the efficacy of the estimator as the distur-
bance characteristics and measurement type vary, providing
important information concerning the estimation problem
for fluid flows. The paper finishes with conclusions.
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Figure 1. An estimator uses the system input, u, and the
output, y, to generate an estimate of the state, x̂.

DYNAMIC ESTIMATION AND THE KALMAN
FILTER

We are interested in estimating the full state of a state-
space model of the form

ẋ(t) = Ax(t)+Buu(t)+Bww(t) (1a)

y(t) =Cx(t)+n(t), (1b)

where u ∈ Rpu is a vector of inputs; w ∈ Rpw is a vector of
unknown disturbances; y∈Rq is a vector of outputs; n∈Rq

is sensor noise; x ∈ Rn is the system state; and A, Bu, Bw
and C are suitably-dimensioned matrices. For the cylinder,
this state-space model is found by applying system iden-
tification to input-output data from direct numerical sim-
ulations. For the Ginzburg-Landau equation, it is formed
directly from the discretization of the governing equation.

Two sources of unknown exogenous inputs are in-
cluded in the state-space model (1). The first is sensor noise,
n(t), which contaminates the sensor measurements so that
the measured value, y(t) differs from the true value. The
second is exogenous disturbances, w(t), which act as an ad-
ditional input which, by their nature, are unknown.

The estimation problem can then be stated as follows:
Given measurements, y(t) (which have been contaminated
by noise n(t)), together with knowledge of the input, u(t),
generate an estimate of the entire system state, x̂(t). For
a state-space model of the form (1), a dynamic estimator
— which is also often referred to as an observer — uses
knowledge of u(t) and y(t) to determine an estimate of the
full state, x̂(t), and of the output, ŷ(t), using

x̂(t) = Ax̂(t)+Bu(t)−L[ŷ(t)− y(t)] (2a)

ŷ(t) =Cx̂(t). (2b)

This system mimics the original state-space model (1), but
is also forced by the output error [ŷ(t)− y(t)] via the ob-
server gain matrix L. The structure of the estimator is shown
in figure 1. Defining an error vector, e(t) = x̂(t)− x(t), (1)
and (2) can be combined to give

ė(t) = ˙̂x(t)− ẋ(t) = (A−LC)e(t)+Ln(t)−Bww(t). (3)

From (3) we see that the error dynamics are determined by
the matrix (A−LC), and can therefore be chosen via suit-
able choice of the observer gain matrix L.

We use a specific type of observer: the Kalman filter,
which amounts to a particular choice of the observer gain
matrix L. This choice of L is optimal in the sense that the
error, e(t) converges in the presence of the stochastic dis-
turbances w(t) and measurement noise n(t), which are each
assumed to be zero-mean, Gaussian, white-noise processes.

antisymmetric 
blowing and suction

flow

disturbances, w(t)

v1(t) v2(t) v3(t)

Figure 2. Cylinder arrangement. Disturbances enter at
the cylinder surface via randomly-generated antisymmetric
blowing and suction. Velocity sensors (◦) are positioned
1.75, 2.75 and 4.75 cylinder diameters downstream of its
centre. Only one of these sensors is used for estimation.

We will set the input, u(t) to zero both for the cylinder
wake and for the Ginzburg-Landau equation. This means
that we do not provide any known forcing, and any response
of the system is due entirely to the unknown disturbances
w(t). Our task can then be thought of as to estimate the ef-
fect of the unknown disturbances on the entire flow field,
given only knowledge of their effect at a particular point in
the flow. (This task is made more challenging by the cor-
ruption of the single sensor measurement by sensor noise.)

ESTIMATION OF THE CYLINDER WAKE
We now consider dynamic estimation of the cylinder

wake at Re = 45 using only a single sensor measurement.
The cylinder flow is solved using direct numerical simula-
tion. The spatial discretization is performed in cylindrical
coordinates using an energy-conservative finite-difference
scheme (Fukagata & Kasagi, 2002). The code has been
validated using grid refinement and boundary placement
studies, as well as comparison with experimental data. At
Reynolds numbers between 60 and 100, the Strouhal num-
bers found agree with the experimental parallel-shedding
data of Williamson (1989) to within 1 %.

The cylinder arrangement is shown in figure 2. Veloc-
ity sensors (which measure the transverse velocity) are posi-
tioned 1.75D, 2.75D, and 4.75D downstream of the cylin-
der’s centre, where D is the cylinder diameter. Only one of
these sensors is used for estimation. The flow is perturbed
with disturbances introduced at the cylinder’s surface which
are unknown to the estimator. Our aim is then to use the
available sensor measurement (either v1(t), v2(t) or v3(t))
to estimate the response of the entire flow field to these un-
known disturbances. To perform the estimation problem we
first require a suitable reduced-order model. We now con-
sider how this reduced-order model is found.

Reduced-order modelling
A reduced-order model of the wake can be represented

in state-space form (1). The Eigensystem Realization Al-
gorithm (ERA) is used to form the reduced-order model
(Juang, 1994). The starting point for the ERA is the sys-
tem’s impulse response, which is found in the cylinder’s
case directly from simulation data. The impulse response
(which in this context is also referred to as the system’s
Markov parameters) is arranged into a particular block data
matrix (a Hankel matrix). By factorizing this block data
matrix using the singular value decomposition, the state-
space matrices in (1) can be found. An important property
of the ERA is that it produces reduced-order models which
are balanced, the balancing referring to the fact that the
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observability and controllability Gramians of the reduced-
order are equal and diagonal. Physically this means that the
input-output behaviour of the system is properly captured,
and this is important for feedback control purposes. For
more details on the ERA, see Juang (1994), and for its ap-
plication to flow control, see Ma et al. (2009); Illingworth
et al. (2011).

The dimension of the reduced-order model’s output—
which is the entire flow field—is very large. There are 220
grid points in the radial direction and 256 grid points in the
circumferential direction, which together make for 56,320
output locations. This is not tractable. We might decide
to restrict attention to a particular part of the domain, but
even then we will have of the order of tens of thousands
of outputs. To make the problem tractable, we therefore
reduce the number of outputs by computing their leading
POD modes. We still use the ERA to find the reduced-order
model, and the procedure to find it is then as follows. Per-
form an impulse response simulation, taking the entire field
as the output; compute the leading POD modes of these
outputs; and use the time-varying POD coefficients as the
output for the ERA. Due to the high dimension of the full
field, we use the method of snapshots to compute the POD
modes. We use 27 POD modes, which is sufficient to cap-
ture 99.99% of the energy in the wake’s impulse response.
Using the POD coefficients, together with the single sensor,
the model has a total of 27+ 1 = 28 outputs. The order of
the state-space model (1) provided by the ERA is n = 29.

Our task now is to estimate the 27 POD coefficients
using only values of the velocity at a single sensor. We can
achieve this using the dynamic estimator already described.
Then at each instant in time, the estimate of the 27 POD
coefficients allows us to estimate the entire flow field.

Results
Results at Re = 45 are now described. We first con-

sider the estimation problem using the transverse velocity
at sensor two as the single sensor measurement, and good
results are obtained. We then look at the effect of the sensor
location on the fidelity of the estimate by considering each
of the three sensor locations shown in figure 2 in turn. We
do this by considering, for each sensor, the error between
the estimated flow and the true flow, integrated in space,
and plotted in time. In addition to considering these three
velocity sensors, we also consider measuring only the lift
force on the cylinder (or rather the coefficient of lift). Ex-
cellent results are seen, with the lift measurement providing
an estimate which is comparable in accuracy to that given
by any of the three velocity sensors.

Estimation with velocity sensor two Es-
timation of the wake using the transverse velocity at sen-
sor two only is shown in figure 3. Even in the presence of
unknown disturbances and measurement noise, the Kalman
filter performs remarkably well in estimating the full flow
field. This is demonstrated in figure 3 (a) as a function of
time at the three velocity sensors (only v2(t) is being used
for estimation); and in (c,d) for a region of the flow at a
particular instant in time. Finally, the total perturbation en-
ergy as a function of time is also indicated in part (b). This
perturbation energy is defined as

PE(t) =
1
2

∫∫
u2

T
(x,y, t)dxdy, (4)

Table 1.
∫

∆(t)dt for each of the four sensing strategies.

sensor v1 v2 v3 CL
∫

∆(t)dt 67.1 51.2 28.9 40.1

where uT is the total velocity perturbation, uT =
√

u2 + v2.

Estimation accuracy with varying sensor
location and type With excellent results seen for ve-
locity sensor two, it is now interesting to consider what hap-
pens as the location of the single sensor is varied: that is, to
look at the accuracy of the estimate of the entire flow field
for each of the three sensors. This is shown in figure 4 (a),
which plots the total perturbation energy, PE(t), for each of
the three sensor locations, and compares them with the true
value. We see that the performance is broadly similar for the
three sensors, with the perturbation energy well-estimated
in all three cases. The performance of the three sensors is
also compared in figure 4 (b), which compares the quantity

∆(t) =
1
2

∫∫
[ûT (x,y, t)−uT (x,y, t)]

2 dxdy. (5)

That is, the square of the estimation error, integrated in
space. From figure 4 (b) we see that the three sensors pro-
vide estimates which are comparable in accuracy.

It is also interesting to look a more global measurement
for estimation. This is achieved in figure 4 by also plotting
∆(t) when the lift on the cylinder is used as the only sensor
measurement. Figure 4 shows that a lift measurement pro-
vides an estimate which is comparable with that provided
by any of the three velocity measurements.

Table 1 supplements figure 4 by looking at the integral
of ∆(t) with time,

∫
∆(t)dt, for the four sensing strategies.

This provides a single convenient measure of the estimation
error by integrating it in space and time. With this as our
measure we see that v3(t) provides the most accurate esti-
mate, with CL coming in second place.

Estimation using the lift force With the en-
couraging results of figure 4 and table 1 in mind, we now

0

1.0

2.0

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

t

P
E
(t
)

∆(
t)

(a)

(b)

Figure 4. Estimation of the cylinder wake: (a) the true to-
tal perturbation energy (◦) is compared to its estimate using
v1 (blue), v2 (green), v3 (red) and CL (black). In (b) the
estimation error integrated in space, ∆(t) (see Eq. (5)), is
plotted for the four cases (colours same as in (a)).
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Figure 3. Estimation of the cylinder wake using v2: (c) the true flow field; and (d) the estimated flow field at a particular
instant in time. (a) shows the transverse velocity at the three velocity sensors (indicated in (c,d)). (b) shows the perturbation
energy, PE(t). Both the true (—) and estimated values (−−) are shown. The instant shown in (c,d) is indicated by N in (a,b).

repeat figure 3, this time using the lift as the single sensor
measurement. This is shown in figure 5 where we see, as
expected from figure 4, that measurement of the lift alone
provides an excellent estimate of the entire flow field. This
is encouraging because it suggests that a surface-based (and
therefore more practical) measurement such as lift can pro-
vide an estimate which is competitive with that provided
by a velocity measurement (which is certainly less practi-
cal). It also suggests that the lift is a high-quality measure-
ment which provides a sufficiently rich summary of the en-
tire wake, and should therefore serve well as a measurement
strategy for feedback flow control purposes.

DYNAMIC ESTIMATION OF THE GINZBURG-
LANDAU EQUATION

In this section we study the estimation problem for a
simpler system: the Ginzburg-Landau equation, which is a
relatively well-studied model system, and which displays
many of the phenomena seen in fluid systems. This al-
lows us to precisely quantify the efficacy of the estimator as
the disturbance characteristics and measurement type vary,
providing important information concerning the estimation
problem with greater ease than could be achieved using di-
rect numerical simulations of the cylinder wake.

The parallel Ginzburg-Landau equation, defined on the
infinite interval, −∞ < x < ∞, is

∂q
∂ t

(x, t) =
(
−ν

∂
∂x

+ γ
∂ 2

∂x2 +µ(x)
)

q(x, t), (6)

with boundary conditions q(x,0)= q0(x). and q(x, t)<∞ as
x→±∞. For a nice review of the Ginzburg-Landau equa-
tion and its use for flow control studies, see Bagheri et al.
(2009). The convective and the dissipative nature of the
flow are represented by the complex terms ν = U + i2cu
and γ = 1+ icd , respectively. The governing equation is
of convection-diffusion type with an extra real-valued term
µ(x) = µ0−c2

u +µ2x2/2 to model exponential instabilities.
The parameters chosen are U = 2.0, cu = 0.2, cd = −1.0,
µ0 = 0.38 and µ2 = −0.01 which are the same as those

used in the subcritical (i.e. globally stable) cases considered
in Bagheri et al. (2009) and in Chen & Rowley (2011). For
these parameter values the flow is convectively unstable for
xI < x < xII, with xI =−8.25 and xII =+8.25. This means
that perturbations grow in this region as they convect down-
stream, but that globally the flow is stable.

The governing equation (6) is discretized using a spec-
tral Hermite collocation method described in Bagheri et al.
(2009). Like the cylinder, the specific type of estimator used
is a Kalman filter. Our particular interest in this section is
on the effect of the location of a single disturbance on the
fidelity of the estimate obtained by an estimator.

Sensing is provided by a single sensor centred at xs = 0.
We keep the single sensor fixed at this location but, moti-
vated by the results of the previous section, we look at two
different types of sensor. Rather than measure q(x, t) at a
point, the sensor measures a weighted integral of q(x, t) so
that the output, y(t) is given by

y(t) =
∫ ∞

−∞
q(x, t)exp

(
− (x− xs)

2

σ2

)
dx+n(t) (7)

Two types of sensor are considered: both are centred at zero
so that xs = 0 in (7). The first is a ‘local’ sensor, for which
σ in (7) is small (σ = 0.4), making the Gaussian weighting
function narrow, so that a localized velocity is measured.
The second is an ‘integral’ sensor, for which σ is large
(σ = 14.1), making the Gaussian weighting much wider so
that a more global, integral measure of the velocity is ob-
tained. This second sensor type is intended to mimic the
measurement of the lift seen in the previous section and is
motivated by the good results achieved there.

A single disturbance (which has zero-mean, Gaussian
statistics in time) acts at xw. The position, xw of this distur-
bance is varied between −16.0 < xw < 16.0. These limits
correspond to approximately twice the region over which
perturbations grow, i.e. xw satisfies 2xI < xw < 2xII.

We now present results for the two sensor types as
the disturbance location varies. The estimator performance
is quantified by the 2-norm of the error dynamics, e(t) =
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Figure 5. Estimation of the cylinder wake at Re = 45 using the lift coefficient: legend same as figure 3, but note that in (a) the
lift coefficient, CL, is plotted in place of v1.

q̂(t)−q(t), defined in (3):

||e||2 =
(∫ ∞

0

∫ ∞

−∞
e2(x, t)dxdt

)1/2
. (8)

(This can be calculated straightforwardly in the frequency
domain using Parseval’s theorem.) We will also want to nor-
malize this error by the 2-norm of q, obtained by replacing
e(x, t) by q(x, t) in (8). This makes for a fairer comparison,
since ||e||2 could change in size simply by virtue of ||q||2
changing in size as the disturbance location varies.

Figure 6 compares the quantities ||e||22 and ||e||22/||q||22
for the two sensor types as the disturbance location, xw,
varies. The disturbance location varies between xw =−16.0
and xw = +16.0. We see that the local sensor outperforms
the integral sensor when the disturbance occurs upstream
of their centres (at xs = 0), but that the integral sensor per-
forms comparably in these cases. We also see a small range
of disturbance locations (approximately 0.5 < xw < 3.5) for
which the integral sensor outperforms the local sensor. This
is explained physically by the fact that, for these values of
xw, the disturbance is entering downstream of the local sen-
sor, which therefore receives little information about it, and
is not able to estimate its effect on the flow. The integral
sensor, on the other hand, receives aggregate information
over a range of spatial locations, and is therefore less af-
fected by the disturbance occurring further downstream.

We finish this section by looking in more detail at two
of the cases plotted in figure 6. We do this by simulating the
model in time, and then comparing the estimates obtained
by the local and integral sensors. Before presenting the re-
sults we must first define the perturbation energy, PE(t),
and the ‘energy’ of the estimation error, ∆(t), since these
quantities will once again be plotted. They are

PE(t) =
1
2

∫
q2(x, t)dx (9a)

∆(t) =
1
2

∫
[q̂(x, t)−q(x, t)]2 dx. (9b)

The first case we consider is xw =−8.5 for which, from
figure 6, the local sensor outperforms the integral sensor.

The comparison in time is shown in figure 7. In parts (a-
d) we see that both sensor types perform well, with good
approximations of the flow field and PE(t) being obtained
in both cases. The differences between the two sensor types
is seen most clearly in (e), which compares ∆(t) (see Eq. 9b)
for the two cases. We see that the local sensor outperforms
the integral sensor, which is consistent with figure 6.

The second case we consider is xw = 1.6 for which,
from figure 6, the integral sensor outperforms the local sen-
sor. The comparison in time is shown in figure 8. This
time the estimates for the two sensor types are not nearly
as good as those obtained in figure 7. (Notice also that the
amplitudes of the energies involved are now much smaller,
since the disturbance is amplified over a shorter part of the
domain.) We see this time that the integral sensor outper-
forms the local sensor—which is again consistent with fig-
ure 6—but both sensor types display difficulty in forming
an accurate estimate for this more challenging case.

CONCLUSIONS
The estimation problem has been considered for two

systems. First, estimation of the cylinder wake at Re = 45
has been considered. Excellent results have been obtained
using a single velocity sensor in the wake. The accuracy
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Figure 6. 2-norm of the error dynamics as a function of the
disturbance location, xw: (a) ||e||22; and (b) ||e||22/||q||22. The
norm for the localized sensor (black circles) is compared to
that for the integral sensor (blue squares).
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Figure 8. Estimation of the Ginzburg-Landau equation for
xw = 1.6: legend same as in figure 7.

of the estimate is broadly similar for the three sensor loca-
tions considered, with the sensor furthest downstream per-
forming the best at this Reynolds number. Estimation using
measurement of the lift force only has also been considered
and, again, excellent results were obtained. This suggests
that a more global (and surface-based) measurement such
as lift provides a sufficiently rich summary of what is hap-
pening in the entire wake, and should therefore serve well
as a measurement for feedback control purposes.

Second, estimation of the Ginzburg-Landau equation

has been considered. The particular focus was on the accu-
racy of the estimate for two different sensor types: i) a local
sensor, and ii) an integral sensor. This was studied by com-
paring the estimate from the two sensor types as the location
of a single disturbance region was varied. The results show
that both sensor types perform well when the disturbance is
upstream of their centres, with the local sensor performing
better than the integral sensor. When the disturbance occurs
downstream of the sensors’ centres, though, the local sen-
sor exhibits a significant degradation in performance, and
the integral sensor outperforms it.

The author would like to thank Hiroshi Naito and Koji
Fukagata for helpful discussions concerning the DNS code.
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