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ABSTRACT
Planar particle image velocimetry measurements of the

flow in a precessing cylinder are presented for nutation an-
gles of up to 15◦. For a case of a moderate Reynolds num-
ber, we observe a rapid transition to a disordered state with a
brief appearance of structures of high azimuthal wave num-
bers. Similarity to observations reported in previous exper-
iments and numerical simulations at much lower tilt angle,
but higher Poincaré number suggests, a triadic resonance as
the transition mechanism. Amplitudes of the forced mode
and the mean streaming flow are extracted; their scaling
with Reynolds number is found to agree reasonably well
with weakly nonlinear theory.

INTRODUCTION AND BACKGROUND
Rotating flows are present in the atmosphere, in oceans

and lakes, and also in astrophysical and many technical ap-
plications. A rotating system allows for inertial waves to
exist owing to the restoring effect of the Coriolis force. One
way to excite inertial waves is precession, the simultane-
ous rotation around two axes as sketched in Figure 1: a
cylinder, tilted through an angle α and rotating at an an-
gular frequency Ω1, is mounted on a turntable which ro-
tates at Ω2. Precession is considered as a possible driver for
the geo-dynamo, i.e., the creation of Earth’s magnetic field.
Also, liquid fuel in spin-stabilised spacecraft may be sub-
ject to precessional forcing, destabilising the whole space-
craft (Manasseh, 1993).

Some types of instability and transition of rotating
flows may be associated with Kelvin modes, the linear,
inviscid eigenmodes of solid-body rotation flow. These
modes are not solutions of the full Navier-Stokes equations
with no-slip boundary conditions. Yet in the weakly non-
linear regime they have proven to be useful diagnostics of
experimental and numerical observations (Meunier et al.,
2008; Blackburn et al., 2014). Each Kelvin mode is char-
acterised by three integer indices (n, l,m) corresponding to
axial, radial, and azimuthal directions, respectively, and is
associated with a frequency. Velocity components of Kelvin
modes all have radial profiles ui(r), vi(r), wi(r) consisting
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Figure 1. Schematic of precessional forcing: a cylinder,
tilted through a nutation angle α and rotating at Ω1, is
mounted on a turntable which rotates at Ω2.

of Bessel functions, and a sinusoidal axial and azimuthal
structure. Figure 2 shows the four lowest-order modes. Fur-
ther details are given e.g. in Meunier et al. (2008).

There are an infinite number of Kelvin modes. Preces-
sional forcing can excite Kelvin modes with m = 1 in the
case of a cylinder (or m = 2 for ellipsoids). If (1) a Kelvin
mode’s frequency matches the forcing frequency and (2)
that mode’s axial wave length fits the container’s height H
(i.e., nπ/k = H, n = 1,2, . . .), the mode is resonant. Reso-
nant modes can grow to a large amplitude limited by viscos-
ity or non-linearity. A mode forced outside of a resonance
will still grow, but that growth is additionally damped de-
pending on the amount of detuning. For resonant conditions
and at large enough Reynolds numbers, a Kelvin mode may
become unstable. This opens one possible route to turbu-
lence in rotating flows.

Johnson (1967), Malkus (1968) and Manasseh (1992)
observed a rapid transition from laminar to turbulent flow
called catastrophic collapse. This transition may be ex-
plained by several competing theories: instability of a sin-
gle Kelvin mode as outlined above, nonlinear interaction of
three Kelvin modes known as triadic resonance, boundary
layer instability, or modification of the base flow by mean
streaming flow (Kobine, 1996) possibly leading to centrifu-
gal instability.
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Figure 2. Iso-surfaces of axial vorticity showing the theo-
retical shape of the lowest order Kelvin modes.

Experimental evidence of triadic resonance in a pre-
cessing flow at a small tilt angle α = 1◦ was presented
by Lagrange et al. (2008). They used a cylinder of as-
pect ratio Γ = H/R = 1.62 at a Reynolds number Re =
Ω1R2/ν = 7670 and a Poincaré number Po = Ω2/Ω1 =
−0.15, where R is the radius of the cylinder, and ν the ki-
netic viscosity. When forcing (denoted by an index F) the
mF = 1 mode, PIV visualisations clearly showed two para-
sitic modes m1 = 5 and m2 = 6, satisfying the triadic reso-
nance condition mF = |±m1 ±m2|. Equivalent conditions
exist for the modes’ frequencies and their axial wavenum-
bers. Theory developed in Lagrange et al. (2011) revealed
that an aspect ratio of 1.62 in fact enables the most unstable,
exact resonant triad.

This case was studied numerically in Blackburn et al.
(2014) and may serve here to demonstrate the dynamics of
the flow. Reproduced in Figure 3 is the history of kinetic
energy of azimuthal Fourier modes in the cylinder frame of
reference (in which the kinetic energy in m = 0 contains no
contribution of solid body rotation). Three distinct stages
are clearly visible: (1) an initial, seemingly steady state
where the forced mode’s energy is saturated and higher az-
imuthal modes are slaved to the m = 1 mode, followed by
(2) an instability where triad interaction feeds energy from
mode 1 to modes 5 and 6; while this is likely to have started
with the initial saturation of mode 1, it does not become
apparent before t = 130 (where t = t∗/T is the nondimen-
sional time based on the cylinder rotation period). In the
late stage of this instability, higher modes grow to large am-
plitudes, possibly saturated by an increasing m = 0 mode
and a decrease in m = 1, finally leading to (3), an asymp-
totic state where higher modes retain high energy levels or
enter limit cycle oscillations.

Existence of triadic resonances has recently been ques-
tioned for the case of a cylinder of Γ ≈ 2 and a large tilt an-
gle of 45◦ (Kong et al., 2015). Accurate PIV measurements
in Lagrange et al. (2008) and Meunier et al. (2008) were
limited to small tilt angles, largely due to practical restric-
tions of their experimental setup. We will extend their work
using a significantly improved setup: with the recent com-
missioning of a large rotating platform we can now mount
the complete PIV system (laser, camera, computer) along
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Figure 3. History of Fourier modal kinetic energy for the
DNS of Blackburn et al. (2014), in the gimbal frame of ref-
erence. Γ = 1.62, Re = 7670, Po =−0.15, α = 1◦.

with the precessing cylinder in the rotating table frame. This
allows us to tilt the laser light sheet with the cylinder. Larger
tilt angles of up to 15◦ are now possible; previously this
would have resulted in significant errors.

We report new results from PIV measurements at an as-
pect ratio of 1.835, tilt angles up to 15◦ and Reynolds num-
bers ranging from 6× 103 to 105. In all our experiments,
the first Kelvin mode is forced at its first resonance. Satu-
ration amplitudes of Kelvin modes are extracted and com-
pared to scaling laws suggested in Meunier et al. (2008).
For a weakly forced case (large tilt angle, but small Poincaré
number), we observe dynamics similar to Blackburn et al.
(2014), suggesting a triadic resonance.

We then focus on quantifying the mean streaming flow.
While inviscid Kelvin modes generate no mean streaming
flow (an axisymmetric flow), streaming occurs as a conse-
quence of viscous modification of Kelvin modes at finite
Reynolds numbers, i.e. boundary layer structure, and non-
linear terms in the equations of motion. Characterising the
mean streaming flow is important because it changes the
base flow away from solid-body rotation, therefore breaking
the underlying assumption; also it detunes the resonances
of the Kelvin modes. It directly impacts all of the proposed
transition mechanisms. So far, no theory has succeeded in
predicting the amplitude or spatial structure of the mean
streaming flow. Finally, our data will allow validation of
accompanying direct numerical simulations.

EXPERIMENTAL SETUP
Figure 4 shows our experimental setup. A cylinder,

filled with water and spinning at Ω1, is mounted on a DC
motor’s axis. A rotary encoder measures the motor’s an-
gular velocity with an accuracy of 0.1%. The cylinder is
made from Perspex and has an inner radius R = 46.2mm±
0.1mm. Its effective height H can be varied by using differ-
ent insets. Aligned with the axis and facing the cylinder’s
top, a Redlake ES 11000 11 megapixel camera records PIV
images. Motor, cylinder and camera are mounted on a gim-
bal which can be tilted to an angle α of up to 15◦ by a
linear stepper motor. The accuracy of the tilt angle is 0.1◦.
A light sheet created by a 250mJ dual-pulse NdYAG laser
(Big Sky Laser) and cylindrical lenses illuminates a cross-
section of the tilted cylinder at a height zPIV = z/H. The
coordinate system is fixed at the centre of the cylinder. To-
gether with a PC controlling the camera, all of the above is
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Figure 4. Experimental setup: water-filled cylinder, PIV
camera and laser, and computer mounted on a rotating table.

mounted on a large platform rotating at Ω2. The total ro-
tation along the axis of the cylinder in the inertial frame of
reference is Ω = Ω1 +Ω2 cosα . Initially, the cylinder was
spinning upright to establish a solid body rotation. It was
then tilted (defining t = 0) and 200 image pairs (the maxi-
mum permitted by available memory) of the transient flow
were recorded at 1 Hz. Once the images were written to the
hard disk—about 6 minutes after the tilt—the flow was as-
sumed to have reached an asymptotic state and another 50
image pairs were recorded.

PIV PROCEDURE, VALIDATION, AND POST-
PROCESSING

Since the camera is mounted in the gimbal frame of
reference, it mainly records solid-body rotation flow. To re-
cover the secondary flow we remove the cylinder rotation
by counter-rotating the image pairs prior to the PIV cross-
correlation. Here, it is essential to know the exact centre of
rotation in image coordinates since errors in its position ∆xc
introduce a spurious mean velocity ∼ ∆xc/∆t, where ∆t is
the time separation of an image pair. However, we found
the centre of rotation in image coordinates could differ be-
tween experiments (when the cylinder had been removed
and re-placed) or even move during one experiment (when
the tilt occurred, the cause of which remained unclear). We
therefore had to adopt a mostly automatic procedure to ob-
tain the centre of rotation for each experiment individually:
(1) iteratively identify the cylinder wall at eight azimuthal
locations by finding radial step changes of image brightness
averaged over segments of 15◦, (2) fit an ellipse to the eight
wall locations, and (3) time-average the centre to eliminate
wobbling due to a slight misalignment of camera axis and
cylinder axis.

Figure 5 compares PIV results to a direct numerical
simulation (DNS) using a spectral-element Fourier method
(Blackburn & Sherwin, 2004) to validate both approaches.
Details of the numerical setup in the rotating frame of ref-
erence are given in Blackburn et al. (2014). Reynolds num-
ber and tilt angle were chosen such that the forced mode is
still dominant. Symbols show the in-plane velocity compo-
nents extracted along a diameter from time-averaged PIV
data. Lines show an equivalent extraction from DNS. For
α = 15◦ and Re = 558 (Figure 5a) we find an almost per-
fect agreement for both velocity components. At a smaller
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Figure 5. Time-averaged velocity components normal
(black) and tangential (red) to the direction of tilt, extracted
along a diameter in a plane at one quarter of the cylinder
height, from PIV (symbols) and DNS (lines). Γ = 0.457,
Po ≈ −0.475. (a), α = 15◦ and Re = 558; (b), α = 5◦ and
Re = 1440.

angle α = 5◦, but higher Re = 1440, the PIV velocities
are slightly larger than the numerical predictions, perhaps
caused by a small absolute error in the tilt angle, which be-
comes more severe at smaller angles. Still, the agreement
is very good, and we conclude our PIV measurements are
reliable.

The measured radial and azimuthal velocity compo-
nents u,v were projected onto an equivalent slice of the
Kelvin mode’s velocity ui,vi as described in Meunier et al.
(2008). (For brevity, the set of integers (n, l,m) is denoted
i where the exact integers are irrelevant.) We assume the
experimental in-plane velocity at height z is

(
u
v

)
= ΩRRo∑

i
ai sin(kiz)

(
−isin(ϕ +βi)ui(r)

cos(ϕ +βi)vi(r)

)
, (1)

i.e., consists of a sum of Kelvin modes, each rotated by an-
gle βi. Exploiting the orthogonality of the Kelvin modes,
one can obtain the non-dimensional amplitude ai. Note
that the effect of forcing amplitude is accounted for by the
Rossby number Ro = Ω2 sinα/Ω in Eq. (1); in the linear
regime, a change in tilt angle should not affect ai, every-
thing else being constant. Yet we will mostly present di-
mensional amplitudes ΩRRoai in the following.

The amplitude of the mean streaming flow a0 is diffi-
cult to quantify. No theory exists for the radial profile onto
which the measured velocity could be projected. Instead,
we extract the maximum v̂0 of the azimuthally averaged az-
imuthal velocity v0(r) in the gimbal frame of reference and
define a0 via v̂0 = ΩRRoa0.
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Figure 6. Instantaneous axial vorticity at one quarter of the cylinder height in 1/s at (a) t = 16.5, (b) 21.3, and (c) 24.2;
Γ = 1.835, Re = 6000, Po =−0.0679, α = 15◦.

INITIAL DYNAMICS
We carried out a series of experiments varying tilt angle

and Reynolds number at an aspect ratio Γ = 1.835. Forc-
ing the first mode at its first resonance yields an approx-
imately constant Poincaré number in the range −0.0689 ≤
Po≤−0.0666 (retrograde precession). Note that this aspect
ratio does not allow for an exact resonant triad as studied in
Lagrange et al. (2008); here, no two parasitic modes exist
that are exactly resonant with the forced mode.

We first describe the dynamics following the tilt, in-
cluding a rapid transition from a seemingly steady state
dominated by the forced mode, to a disordered state, for an
exemplary case Re = 6000, α = 15◦, Po = −0.0689. De-
spite the large tilt angle, we still expect weakly nonlinear
behaviour because the Poincaré number is small.

Figure 7(a) shows the evolution of the first four (ra-
dial) Kelvin modes (n = 1, l, m = 1) after the tilt. The time
axis is split to accommodate both the first PIV recording di-
rectly following the tilt at t = 0 and the second recording
starting at t ≈ 200. Kelvin mode amplitudes show simi-
lar dynamics as the Fourier mode energies observed in the
DNS of Blackburn et al. (2014) (cf. Fig. 3). We find a steep
initial rise of the forced Kelvin mode (1,1,1) which then (af-
ter an overshoot) saturates around t = 15 and dominates the
Fourier energy of that mode—the amplitudes of the m = 1
Kelvin modes of higher radial wavenumber remain small
at all times. Contours of instantaneous axial vorticity at
t = 16.5, extracted from a plane at quarter-height of the
cylinder and shown in Fig. 6(a), exhibit dominance of az-
imuthal wave number m = 1, accompanied by a barely vis-
ible m = 2 structure, and in accord with Fig. 3.

Around t = 25, the amplitude of the forced Kelvin
(Fig. 7a) mode drops slightly, then reaches an asymptotic
state by t = 40 which persists throughout the second mea-
surement. A similar decrease is observed in Fig. 3 for m= 1
at t ≈ 200, associated with the parasitic modes m = 5 and
6 growing to large amplitudes. Weakly nonlinear theory
based on a triadic resonance (Lagrange et al., 2011) predicts
that Kelvin modes m = 5 and 6 are the most unstable ones
for aspect ratios 1.62 ≤ Γ ≤ 3.6, including Γ = 1.835 of
the current experiment, in which higher modes first become
apparent in the measured axial vorticity at t = 17.9. A snap-
shot at t = 21.3 in Fig. 6(b) reveals structure predominant
in the bulk of the flow which appears to have even higher
azimuthal wave numbers than 5 and 6, although these could
be harmonics. Fourier analysis of the velocity components
for 0.6 ≤ R/Rmax ≤ 0.85 showed dominance of m = 1 and
2, followed by roughly equal contributions of modes 5–10.
Kelvin mode projections similar to Fig 7 for modes up to
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Figure 7. Amplitudes of (a) the first four radial Kelvin
modes (n = 1, l,m = 1), and (b) the mean streaming flow,
during the first PIV recording 0 ≤ t ≤ 48 following the tilt,
and during the second recording 200 ≤ t ≤ 213. The blue
line in (b) shows the ratio of the mean streaming flow and
the forced mode’s amplitude.

m = 10 show modes m > 2 are absent before and appear
during the instability, although the data is rather noisy ow-
ing to the limited PIV resolution.

During the instability, the vorticity structures pulsate
with a frequency on the order of half the PIV image acqui-
sition frequency ( fPIV = 1Hz, the non-dimensional period
1/( fPIV T ) = 0.48) and grow rapidly until azimuthal struc-
ture is no longer discernible at t = 24.2. Hence, this transi-
tion to disordered flow is observable only over a very short
time of approximately six cylinder revolutions.

This transition is also very evident in the amplitude of
the mean streaming flow v̂0 plotted in Figure 7(b). Note that
the Y-axis shows the negative of the amplitude; the mean
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Figure 8. Dimensional amplitude of the forced Kelvin
mode for various tilt angles and Reynolds numbers (sym-
bols), and the theoretical prediction (lines). Γ = 1.835,
Po ≈−0.067.

streaming flow decelerates the base flow. We find a similar
overshoot and saturation after the tilt as for the amplitude
of the force mode, and until the transition, mean streaming
flow and forced mode are clearly linked as shown by their
ratio plotted in blue on the alternative Y-axis. However, the
mean streaming flow grows during the transition, in accord
with m = 0 energy in Fig. 3 at t ≈ 200.

Asymptotic state
We now report asymptotic state amplitudes of the

forced Kelvin mode and the mean streaming flow, measured
approximately six minutes after the tilt, for all our experi-
ments at Γ = 1.835. The focus is on investigating the scal-
ing with Reynolds number and tilt angle.

Kelvin mode amplitudes Symbols in Figure 8
show the measured amplitude of the forced Kelvin mode,
in dimensional units. As expected, the mode amplitudes
increase with Re and α . The lines show the theoretical
amplitude v1 = |iΩR f Ro

√
Re/s|, where the complex sur-

face viscous parameter s and the real linear forcing param-
eter f are given in the appendix of Lagrange et al. (2011).
For Reynolds numbers below 5×104, the experimental data
matches the scaling ∼

√
Re quite well. The linear scaling

∼ sinα with the tilt angle is reflected less well; the low-
est angle 0.5◦ is constantly underpredicted by theory and
the highest angles 5 and 15◦ are constantly overpredicted.
However, the 2◦ data is matched very well. Note that there
is no fitting parameter, the theory predicts the dimensional
amplitude of the forced mode saturated by viscosity.

Mean streaming flow Figure 9 shows the am-
plitude of the mean streaming flow, normalised by the cylin-
der circumferential velocity. Note that for this aspect ra-
tio, Ω1 is very close to Ω. A nondimensionalisation us-
ing the total angular frequency as in Fig. 8 produces almost
the same plot, yet the nondimensionalisation shown here
allows to view the amplitude in relation to the base flow
of solid body rotation: the largest amplitude observed is
≈ 22% of the cylinder’s circumferential velocity at α = 15◦

and Re = 95000. As expected, the mean streaming flow
increases with α . We fitted a power-law of a form CReD
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Figure 9. Amplitude of the mean streaming flow, nondi-
mensionalised by the cylinder’s circumferential velocity, for
various tilt angles and Reynolds numbers (symbols). Lines
show power-law fit CReD. Parameters as in Fig. 8.

to the data, shown by the lines, which yields exponents D
ranging from 0.18 to 0.38.
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Figure 10. Amplitude of the mean streaming flow, divided
by the square of the force mode’s dimensional amplitude
(symbols), and a fit ∼ Re−1. Parameters as in Fig. 8.

Because the mean streaming flow results from non-
linear interaction of the forced mode with itself, one could
expect it scales as (a1,1,1)

2. We tested this in Figure 10: this
scaling indeed collapses the data for different α roughly to
a single line ∼ Re−1, but not to a constant.

Finally, we plotted time averaged and normalised pro-
files of the mean streaming flow for various tilt angles. At
a given tilt angle, we find the profiles are roughly indepen-
dent of Re, therefore we show data for Re ≈ 46000 as an
example in Fig. 11. Note that all observed dimensional pro-
files were negative, i.e. they counteract the cylinder rotation.
At low α , the profiles are generally right-skewed, although
the 0.5◦ profile shown is a rather extreme case, perhaps af-
fected by measurement errors due to the very low amplitude
v0. The profiles become more symmetric with increasing α .
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Figure 11. Profiles of the mean streaming flow normalised
by their maximum value, at Re ≈ 46000, for various tilt
angles. Parameters as in Fig. 8.

CONCLUSIONS
We presented planar PIV measurements of a precessing

cylinder flow at a tilt angle of 15◦. These experiments are
the first in a series aiming to conclusively explain the res-
onant collapse mechanism as observed by Johnson (1967),
Malkus (1968) and Manasseh (1992). For a weakly forced
case which showed a rapid transition from a state domi-
nated by the forced mode to a disordered state, structures
of azimuthal wavenumber around m ≈ 8 were observed;
such wavenumbers are close to the theoretical predictions
m = 5 and 6 based on triadic resonances (Lagrange et al.,
2011). Amplitudes of projections onto Kelvin modes and
Fourier analysis of the velocity field suggested that multi-
ple azimuthal modes were present. Also, these structures
appeared mostly in the bulk of the flow, not close to the
boundaries. Therefore, of the proposed and competing the-
ories boundary layer instability, centrifugal instability, in-
stability of a single Kelvin mode, and triadic resonance, the
latter seems to be the most likely cause of the transition ob-
served here.

Scalings obtained from Kelvin mode projections for
the full set of experiments largely confirm theoretical pre-
dictions (Meunier et al., 2008). The force mode’s amplitude

scales as the square root of the Reynolds number. Data for
the amplitude of the mean streaming flow, defined here as
the maximum of the azimuthal averaged azimuthal velocity,
suggests a scaling as the square of the forced mode’s ampli-
tude, and as the inverse of the Reynolds number. Numeri-
cal simulation, feasible at Reynolds numbers up to O(104),
could further assist in finding the correct scaling.
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