
TURBULENT MIXING IN CROSS SHEARED STRATIFIED FLOW

Y. Xiao, W. Lin, J. McCormack, Y. He
College of Sccience, Technology and Engineering

James Cook University
Townsville, QLD 4811, Austriala
email: yuan.xiao@my.jcu.edu.au
email: wenxian.lin@jcu.edu.au

email: jessie.mccormack@my.jcu.edu.au
email: yinghe.he@jcu.edu.au

S. W. Armfield, M. P. Kirkpatrick
School of Aerospace, Mechanical and Mechatronic Engineering

The University of Sydney
NSW 2006, Australia

email: steven.armfield@sydney.edu.au
email: michael.kirkpatrick@sydney.edu.au

ABSTRACT
Cross sheared stratified (CSS) flow, in which the hori-

zontal streamwise and spanwise basic sheared flow compo-
nents interact with each other in a stratified environment, are
studied with direct numerical simulation. The cross shear
ratio ξ , defined asξ = ∆v0/∆u0 where∆u0 and ∆v0 are
the respective velocity changes across the sheared/stratified
layer in the streamwise and spanwise directions, is intro-
duced for CSS flow. The coherent structures of CSS flow
are examined forξ = 0∼ 1 andRi = 0.01∼ 0.2, whereRi
is the bulk Richardson number. It is found that in a weakly
stratified environment withRi = 0.01, a significant increase
of the magnitude of the mixedness thicknessδm is observed
from its time series for CSS flow compared to that for par-
allel sheared stratified flow. Three CSS instability modes,
i.e. , a ‘streamwise dominant’ mode, a ‘balanced’ mode and
a ‘spanwise dominant’ mode, are identified, which differ
from each other with different interaction behaviors be-
tween the spanwise ‘eddy wrap’ structures and the classic
streamwise ‘cat eye’ eddies of the Kelvin-Helmholtz insta-
bility. The results also show that in a strongly stratified envi-
ronment withRi=0.1-0.2, the eddy-featured coherent struc-
tures progressively decay into the wave-like structures, and
the normalized mixedness thicknessδθ/δθ ,Ri=0.01 is found
to decrease as an exponential function of increasingRi at
the turbulence stage.

INTRODUCTION
As a representative of geographical flows that occur

inherently in stratified environments, the sheared stratified
flows prevail in meso-scale geographical flows (e.g. , plan-
etary or oceanic boundary layers), large scale stream flows
(e.g. , rivers and estuaries), large water bodies (e.g. , reser-
voirs and lakes), and engineering applications (e.g. , mix-
ing control in solar ponds and methane gas mixing in mine
shafts). The understanding of mixing in sheared stratified

flow also informs the design, control and safety of the mix-
ing facilities in the chemical and pharmaceutical industries
and other industrial areas. So far, the majority of the studies
on sheared stratified flow have focussed on parallel sheared
stratified (PSS) flow, whose basic flow velocity components
in the Cartesian coordinates satisfyV ≪U , whereU andV
are the streamwise and spanwise components of the basic
flow velocity in thex andy direction, respectively. How-
ever, in geographical and engineering scenarios with large
horizontal extent, the magnitude of the spanwise velocity
V is usually comparable to the streamwise counterpartU ,
resulting in cross sheared stratified (CSS) flow where com-
parableU and V coexist. Therefore, an additional con-
trol parameter, called the ‘velocity shear ratio’, is intro-
duced for CSS flow to represent the relative magnitude of
the spanwise velocity to the streamwise velocity and is de-
fined asξ = ∆v0/∆u0, where∆u0 and∆v0 are the velocity
changes across the sheared/stratified layer in the streamwise
and spanwise directions respectively in the Cartesian coor-
dinates.

The studies on the CSS flow are scarce. Atsavapra-
nee & Gharib (1997) observed experimentally that the span-
wise eddy structures have similar appearances to the stream-
wise Kelvin-Helmholtz ‘cat eye’ eddy structures through
introducing the spanwise cross shear by tilting their water
tank after the establishment of the streamwise structures,
whereas Linet al. (2000) reproduced numerically the span-
wise eddies in a CSS flow that are similar to those observed
by Atsavapranee & Gharib (1997). Both studies found that
the mixing effect of CSS flow, in terms of the ‘mixedness’,
is significantly increased when compared to PSS flow at
the same conditions. Recently, a linear stability analysis
by Xiao et al. (2014) on CSS flow suggests that the tempo-
ral growth rate of the unstable modes in CSS flow is much
faster than thar in PSS flow.

In this paper, direct numerical simulation (DNS) is
used to examine the effect ofξ and the bulk Richardson
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numberRi, which will be defined in the next section, on the
dynamics and mixing of CSS flow. The coherent structures
of the CSS flow will be described using the concentration
and vorticity contour plots and the mixing effect will be in-
vestigated in terms of the mixedness thickness.

METHODOLOGY
The governing equations for DNS are the continuity,

Navier-Stokes, and density equations for incompressible
flows with the Boussinesq approximation, which are writ-
ten in the Cartesian coordinates (x, y andz ) as follow:

∇ ·u = 0 (1)

∂u
∂ t

+u ·∇u =−∇
p
ρ̄
+g

ρ − ρ̄
ρ̄

~k+ν∇2u (2)

∂ρ
∂ t

+u ·∇ρ = κ∇2ρ (3)

whereu is the dimensional velocity vector, whose compo-
nents in thex, y, z directions areu, v, w, t is time, p is
pressure,ρ is density,ν andκ are the kinematic viscosity
and thermal diffusivity of fluid,g is the gravitational accel-
eration, andρ̄ is a reference density with a value of 1027
kg/m3. In the DNS,ν = 9.95×10−7 m2/s is used.

The differential operator∇ is ∇ = (∂/∂x)~i +
(∂/∂y)~j+(∂/∂ z)~k, where~i, ~j and~k represent the unit vec-
tor in x, y andz directions. The Laplacian operator∇2 is
∇2 = (∂ 2/∂x2)~i+(∂ 2/∂y2)~j+(∂ 2/∂ z2)~k. The following
typical velocity and density profiles of free shear flow are
set up as the initial basic flow state:

φ0 = ∆φ0tanh[
2
δs
(z− 1

2
Lz)], (4)

in which φ representsu, v, ρ , the subscript ‘0’ indi-
cates the initial value of the physical property,∆u0 and
∆ρ0 are the velocity and density changes across the initial
sheared/stratified layer which has the initial thickness ofδs,
andLz is the vertical extent of the domain under considera-
tion. ξ is the cross shear ratio which represents the relative
magnitude of the cross shear stresses in the spanwise di-
rection compared to that in the streamwise direction and is
defined as,

ξ =
∆v0

∆u0
.

To promote the coherent structures more efficiently, the
following perturbations are imposed on the initial condi-
tions, (4), aiming to excite the primary and secondary in-
stabilities,

φpri = −0.02∆u0cos(
2πx
Lx

)sech[
2
δs
(z− 1

2
Lz)]

×tanh[
2
δs
(z− 1

2
Lz)], (5)

φsec = Aφ ∆u0{1−|tanh[
2
δs
(z− 1

2
Lz)]|}rφ (x, y, z), (6)

where the subscriptspri and sec denote the perturbation
quantities for exciting the primary and secondary instabil-
ities, respectively,rφ is a random number between−1 and
1, Aφ is the amplitude coefficient for the secondary instabil-
ity perturbations. Foru, v, andρ , Aφ are selected as 0.1, 0.1,
and 0.5, respectively. As predicted by Xiaoet al. (2014), the
primary instability mode in CSS flows is a stationary mode
usually corresponding to vortex structures, and the veloc-
ity shear will therefore be the predominant source to excite
the primary instability. Accordingly, ‘pri’ perturbations are
only imposed on the two basic velocity componentsu and
v, not onρ . The initial field of a quantity will be the sum of
the background profile, the primary perturbation, plus the
secondary perturbation if applicable.

The periodic boundary conditions are applied in the
horizontal directions. At the top and bottom boundaries,
the impermeable condition is set forw and the zero flux
boundary conditions are set foru, v, andρ .

A reliable numerical code, PUFFIN, developed by
Kirkpatrick (2014)), one of the current authors, is used to
perform the DNS. The governing equations (1)-(3) are dis-
cretized in space using a finite volume formulation on a
uniform, staggered, Cartesian grid. The advection terms in
both the momentum and scalar transport equations used a
4th-order central difference scheme, while all other spatial
derivatives are discretised using a second-order central dif-
ference scheme. The second order Adams-Bashforth and
Crank-Nicolson schemes are used for the time advance-
ment. The CFL number criterion is used to make sure the
simulation is stable, with the minimum and maximum lim-
its of 0.3 and 0.4, respectively. The discretised momen-
tum and scalar equations are solved by the Gauss-Seidel
method. The pressure correction equation is solved by the
BICGSTAB solver with a modified strongly implicit pre-
conditioner. The code is parallelized using Message Passing
Interface (MPI).

The dimensions of the computational domain are set
based on the stability analysis results of Xiaoet al. (2014).
Lx is choosen asLx = (2π/α)(δs/2) which is the one wave-
length of the instability mode, in whichα is the wavenum-
ber corresponding to the most unstable mode.α is selected
as 1/3 based on the stability analysis of Xiaoet al. (2014).
Ly and Lz are set to be equal toLx to prevent the bound-
ary intervention when coherent structures in the CSS flow
become more expansive atξ > 0.5. δs is set as 0.1795 m.
The number of cells in thex, y andz directions are set as
256× 256× 128, which is sufficient to capture the neces-
sary features of the primary coherent structures.

The dimensionless parameters dictating the stability of
flow are the initial bulk Reynolds number,Re, the initial
bulk Richardson number,Ri, and the Prandlt number,Pr,
defined as follows,

Re =
∆u0δs

ν
, Ri =

g∆ρ0δs

ρ̄(∆u0)2
, Pr =

ν
κ
.

As this study aims to investigate the primary coherent struc-
tures of CSS flow,Re is therefore selected as 1200, in the
common range (1000∼ 2000) for laboratory flows.Pr = 1
is used for all simulations.Ri will vary from 0.01 to 0.2 and
ξ will vary from 0 to 1.
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RESULTS
Coherent Structures

The typical evolution history of CSS flow structures
leading to turbulence is demonstrated in figure 1, where the
three-dimensional plots of the concentrationc at four repre-
sentative moments of the CSS flow instability evolution ob-
tained by DNS are shown for theξ = 0.5 case atRi = 0.01.
c is defined as:

c =
ρ −ρ1

ρ2−ρ1
(7)

whereρ is the local density,ρ1(= ρ̄ − 0.5∆ρ0) andρ2(=
ρ̄ + 0.5∆ρ0) are the initial densities at the top and bot-
tom boundaries. During the primary instability stage, when
t = 1000 s as shown in figure 1(a), three spanwise eddies
are observed. It seems that the bodies of spanwise ed-
dies, especially the largest one close to they = 0 plane,
not only extend across the computational domain, but also
wrap over the developing body of the ‘cat eye’ eddy. There-
fore, unique spanwise ‘eddy wrap’ coherent structures are
the prominent features of the CSS flow instability. Fur-
thermore, the spanwise ‘eddy wrap’ and the streamwise
‘cat eye’ eddy structures continue to grow as shown in fig-
ure 1(b), followed subsequently by the commencement of
the decay of the ‘cat eye’ eddy structures at aboutt =1600
s while the weaker spanwise eddies still expand as shown
in figure 1(c). Att =2000 s, as shown in figure 1(d), the
entire coherent structure collapses and a chaotic turbulent
flow state appears.

Figure 1. Contours of concentrationc for the CSS flow
instability in theξ = 0.5 andRi= 0.01 case: (a) the primary
eddy wrap structure att = 1000 s; (b) the collapse of the
streamwise eddy and the growth of the spanwise eddy at
t = 1380 s; (c) the collapse of the streamwise eddies and
the entire coherent structure att = 1600 s; and (d) the decay
into turbulence att = 2000 s.

Whenξ changes, the evolution of the CSS flow struc-
tures basically follows in a similar fashion to that shown in
figure 1. However, different appearances of the coherent
structures are observed for differentξ values during the pri-
mary and secondary instability stages as shown in figure 2.
The different coherent structures at differentξ values can be
categorized as three types; a ‘streamwise dominant mode’

Figure 2. Contours of concentrationc of the CSS flow at
Ri= 0.01 with (a) the ‘KH’ mode for PSS flow withξ = 0.0
at t = 1380 s, (b) the ‘streamwise dominant’ mode for CSS
flow with ξ = 0.2 att = 1200 s, (c) the ‘balanced mode’ for
CSS flow withξ = 0.5 att = 1380 s, and (d) the ‘spanwise
dominant mode’ for CSS flow withξ = 0.8 att = 1200 s.

with ξ = 0.1− 0.3, a ‘balance mode’ withξ = 0.4− 0.6,
and a ‘spanwise dominant mode’ withξ = 0.7−1.0. The
typical coherent structures for these three different modes
are exhibited in figure 2(b) to figure 2(d), respectively. Also
included in the figure is the typical ‘cat eye’ eddy structures
for the ‘KH’ mode for PSS flow withξ = 0.0 for compar-
ison, as shown in figure 2(a). For the ‘KH’ mode, there is
no overturning in the spanwise direction. As a weak cross
shear withξ = 0.2 is introduced, as shown in figure 2(b),
several small spanwise ‘eddy spots’ are observed at the
braid region of the streamwise ‘cat eye’ eddy. Asξ is fur-
ther increaset to 0.5, the spanwise ‘eddy spots’ evolve into a
‘eddy wrap’ as shown in figure 2(c), where the ‘cat eye’ fea-
tures become ambiguous at the center of the streawmwise
eddy structures. Atξ = 0.8, as shown in figure 2(d), the en-
larging spanwise ‘eddy wrap’ structure seems to suppress
the streamwise ‘cat eye’ and lead to an internal collapse of
the streamwise eddy structure from its center.

If the background stratification becomes stronger asRi
increases, the coherent structures observed in the weakly
stratified environment as shown in figure 1 will more or less
be suppressed, as demonstrated in figure 3 which shows the
different primary coherent structures of CSS flow at differ-
entRi values but with a fixedξ = 0.5. WhenRi is increased
from 0.01 to 0.05, as shown in figure 3(a) and figure 3(b),
both the streamwise ‘cat eye’ eddy and the spanwise ‘eddy
wrap’ eddy structures seem to be compressed towards the
eddy core, as the size of the coherent eddy structures dimin-
ishes while the concentrationsc at the eddy cores increase
from 0.01∼ 0.18 as shown by blue contour to 0.45∼ 0.55
as shown by white contour. AtRi = 0.15, as shown in fig-
ure 3(c), both the streamwise and spanwise eddy structures
degrade into overturning structures, whose sizes further de-
crease when compared to theRi = 0.05 case. AtRi = 0.2,
as shown in figure 3(d), the spanwise overturning struc-
tures further decay into wave-featured structures due to a
stronger background stratification, while on the other hand
the spanwise overturning seems to reversely grow stronger,
suggesting a complicated mechanisms in strongly stratified
environments.

As coherent structures in the CSS flow display strong
eddy features, it is very helpful to further examine the vor-
ticity contour plots corresponding to thec contour plots.
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Figure 3. Contours of concentrationc of CSS flow at
ξ=0.5 with (a) Ri =0.01 at t =1380 s, (b)Ri =0.05 at
t =1500 s, (c)Ri =0.15 att =1250 s, and (d)Ri =0.20 at
t =1500 s.

Figure 4 shows the slice plot of the streamwise vorticity
contours atRi =0.01 with differentξ values. The stream-
wise vorticity is defined as:

ωx =
∂w
∂y

− ∂v
∂ z

. (8)

For the KH instability case (atξ = 0), this slice plane is
the vertical central plane aty = 0.5Ly, and for the CSS flow
instability cases, it is the vertical slice plane determined by
the initial point (0,yi, 0) and the direction vector (0.99~i,
0.12~j, 0.0~k), rather than in thex direction, due to the slight
misalignment of the symmetry axis of the spanwise eddy
wrap structure with thex direction. Forξ = 0.2 and 0.5,
yi = 0.25Ly, and forξ = 0.8, yi = 0.3125Ly.

For the ‘KH’ mode as shown in figure 4(a), the posi-
tive and negativeωx regions alternatively fill in the ‘cat eye’
eddy core area, while in the braid region only positiveωx

exists. As cross shear is introduced, negativeωx represent-
ing the spanwise vorticity tube appears in the braid regions
as well. Atξ = 0.2, as shown in figure 4(b), the negative
ωx in the braid regions is still very weak, which corresponds
to the weak appearances of spanwise eddies shown in fig-
ure 2(b). Atξ =0.5, as shown in figure 4(c), the significant
spanwise ‘eddy wrap’ structures represented by large neg-
ative ωx regions surround the central ‘cat eye’ eddy core,
where positiveωx dominates. Compared to the ‘KH’ mode
and the ‘streamwise dominant’ mode, the sizes of the cen-
tral ‘cat eye’ eddies in theωx plot are smaller, indicating
that the expanding spanwise ‘eddy wrap’ structures largely
suppress the streamwise eddy structures. A complete domi-
nation of the spanwise ‘eddy wrap’ occurs for the ‘spanwise
dominant mode’ as shown in figure 4(d), where only a small
positiveωx spot survives in the center. The significantly de-
grading ‘cat eye’ structures shown in figure 4(d) supports
the observations from figure 2(d) that the streamwise eddy
structures collapse from its core.

The influence ofRi is also examined with theωx plots
as shown in figure 5 forξ = 0.5 and fourRi values which
are the same as those in figure 3. AsRi increases to 0.05,
the spanwise ‘eddy wrap’ structures reduce to thin and ex-
tended eddy tubes, as shown in figure 5(b). The streamwise
‘cat eye’ eddies at the center of the domain are compressed
as a result of the enhanced background stratification so that
a more evident ‘cat eye’ shape is observed when compared

Figure 4. Contours ofωx in a vertical slice plane for CSS
flow in a weakly stratified environment atRi= 0.01 with (a)
ξ = 0.0 att = 1600 s, (b)ξ = 0.2 att = 1500 s, (c)ξ = 0.5
at t = 1200 s, and (d)ξ = 0.8 att = 1050 s. The cold(hot)
color denotes a negative(positive)ωx.

Figure 5. Contours ofωx in a vertical slice plane for CSS
flow with ξ = 0.5 and at (a)Ri=0.01 att = 1200 s, (b)
Ri=0.05 att = 1500 s, (c)Ri=0.15 att = 1250 s, and (d)
Ri=0.2 att = 1500 s. The cold(hot) color denotes a nega-
tive(positive)ωx.

to that in figure 5(a). AsRi is further increased, the en-
tire coherent structures start to propagate across the periodic
streamwise boundaries. WhenRi =0.15, the size of stream-
wise ‘cat’ eye eddy further decreases as shown in figure 5(c)
and atRi=0.20 the eddy structures are totally replaced by
the propagating wave-featured structures seen in figure 5(d),
where the spanwise wave structures grow larger compared
to a small spanwise overturning structure in figure 5(c). The
growing spanwise wave structures suggest that more com-
plicated mechanisms might be involved in CSS flow with
large background stratifications.

Mixedness
The mixing effect in CSS flow can be quantified by a

quantity called mixedness,M(z, t), introduced by Konrad
(1976). M(z, t) represents the ratio between the densities
with and without fluctuations. The mixedness thickness,δθ ,
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is obtained by the integration ofM(z, t), i.e. ,

δθ =
∫ Lz

0
M(z, t)dz. (9)

Figure 6 presents the time series ofδθ for ξ varying
over the range 0≤ ξ ≤ 1.0. For eachξ value, three de-
velopment stages are observed forδθ ; a short slow growth
stage, a rapid growth stage and finally an asymptotic stage.
In the slow growth stage,δθ for all ξ values almost overlap.
In the rapid growth stage, the magnitude ofδθ generally
increases significantly with increasingξ , indicating effec-
tive improvements in mixing. Thus, during the rapid growth
stage, the CSS flow instability is far more effective in terms
of the mixing effect than the traditional KH instability. This
is in line with the experimental observations by Atsavapra-
nee & Gharib (1997) and Linet al. (2000). Nonetheless, it
is observed that the CSS flow has no obvious advantages in
terms of the mixing effect at the asymptotic stage, as there is
little difference between the values ofδθ for ξ ≥ 0.4 cases.

When δθ is normalized byδθ ,ξ=0, two peaks are
clearly shown in figure 7 and are marked as the ’first peak’
and the ’second peak’, which indicate the developed pri-
mary instability and the saturation of the coherent struc-
tures respectively. Two peaks found in the time series of
δθ/δθ ,ξ=0 at differentξ reflect the results of the normaliza-
tion factorδθ ,ξ=0, in which the primary instability and the
secondary instability are distinct from each other, as seen in
figure 6. Similar to figure 6, asymptotic stages are found in
figure 7 where at differentξ valuesδθ is not so significant
compared to those at the primary(second) instability stage
as marked by ’first(second) peak’.

With appearances of two peaks, the differences among
three CSS instability modes are more obvious in the time
series ofδθ/δθ ,ξ=0. For the ‘streamwise dominant’ mode
with ξ = 0.1−0.3, the second peak is significantly higher
than the first peak, indicating that the mixing process is
stronger at the saturation stage. This is physically rea-
sonable because in the ‘streamwise dominant’ mode, the
streamwise ‘cat eye’ eddy still dominates over the weak
spanwise ‘eddy wrap’ structures, therefore the expansion
of the KH eddy contributes more to the spanwise satura-
tion process. In the ‘balanced’ mode withξ = 0.4− 0.6,
the first peak catches up with the second, indicating that
the primary and secondary instabilities achieve almost the
same amount of mixing due to the gradually stronger span-
wise eddy structures. In the ‘spanwise dominant’ mode,
the first peak overtakes the second peak and becomes the
dominant factor in the turbulence mixing. This is because
the streamwise KH eddy is strongly suppressed by the span-
wise eddy as shown in figure 2(d) and figure 4(d). It is noted
that the time span from the first peak to the second peak is
decreasing with increasingξ , indicating faster transition to
turbulence in the CSS flow with increasingξ .

As Ri further increases, the evolution ofδθ is modified
by the increasing background stratification. Figure 8 shows
the normalizedδθ atRi =0.15 with 0≤ ξ ≤ 1.0. Compared
to figure 6, only a single peak is found at aboutt =2500 s,
when the saturation of the coherent structures commences
before the turbulence stage. The disappearance of the first
peak associated with the primary instability atRi = 0.15
corresponds to the suppressed appearance of the primary
coherent structures observed in figure 3(c).

To compare with the experimental results obtained by
Atsavapranee & Gharib (1997) during the turbulence stage
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Figure 6. Time series ofδθ at Ri = 0.01 with ξ varying
over the range of 0≤ ξ ≤ 1.0.
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Figure 9. δθ/δθ ,Ri=0.01 at the turbulence stage obtained
experimentally by Atsavapranee & Gharib (1997) and nu-
merically by the current study plotted againstRi.

(the asymptotic stage as shown in figure 6),δθ obtained in
this numerical study and in the experimental study of At-
savapranee & Gharib (1997) are normalized by their cor-
responding values ofδθ at Ri =0.01. The normalized
δθ/δθ ,Ri=0.01 are shown in figure 9, where the numeri-
cal results and the experimental results are represented by
the void and solid points, respectively. The gaps between
the experimental results and the DNS results are observed
and are found to have further increases after approximately
Ri = 0.03. Such increasing gaps are a result of the different
length scale setup in Atsavapranee & Gharib (1997) and this
study. In the current DNS simulation only a single wave-
length of the unstable mode is used with periodic bound-
ary conditions, while in the experiments of Atsavapranee &
Gharib (1997) the water tank extends the length of several
unstable mode units. Therefore the coupling between adja-
cent flow structures, such as pairing between two adjacent
eddy structures, are unable to be produced in the current
DNS study. Nevertheless, at smallRi (Ri < 0.03) where
the length scales of unstable flow structures are larger due
to less suppression from the stratification, the experimental
results and the current DNS results correlate very well.

The following best-fit correlations betweenδθ/δθ ,Ri=0
andRi at the asymptotic stage are obtained,

δθ/δθ ,Ri=0.01 = 0.22874

+0.85318× (8.01364×10−7)Ri (10)

for the DNS results and

δθ/δθ ,Ri=0.01 = 0.0131

+1.16979× (1.74621×10−9)Ri (11)

for experimental results, as shown in figure 9. However, the
data withξ = 1.0 deviates considerably from the correla-
tions, implying that a different dynamic mechanism occurs
at high cross shear.

CONCLUSIONS
In this study, a cross shear ratioξ is introduced in PSS

flow to create a CSS flow configuration. The influence of

the cross shear ratioξ representing the relative contribu-
tion of the cross shear and the bulk Richardson numberRi
representing the relative intensity of the background strati-
fication with respect to the mainstream velocity shear is in-
vestigated numerically for the CSS flow over the ranges of
ξ = 0∼ 1 andRi = 0.01∼ 0.2. For the weakly stratified en-
vironment where the velocity shear dominates, three types
of the CSS flow instability modes are found: the ‘stream-
wise dominant’ mode withξ = 0.1 ∼ 0.3, the ‘balanced’
mode with ξ = 0.4 ∼ 0.6, and the ‘spanwise dominant’
mode with ξ = 0.7 ∼ 1.0. They differ from each other
with different interaction behaviors between the spanwise
‘eddy wrap’ structures and the classic streamwise ‘cat eye’
eddies of the KH instability. For stronger background strat-
ifications with increasedRi values, the eddy-featured coher-
ent structures are suppressed and ultimately downgraded to
wave-like coherent structures.

The time series of the mixedness thicknessδm for
weakly stratified environments show significant increases
of δm at the primary and secondary instability stages in CSS
flow compared to PSS flow. After normalization ofδm by
δm at ξ =0 for PSS flow, two peaks appear in the times
series of the normalized mixedness thicknessδθ/δθ ,ξ=0 as
manifestations of primary and secondary instabilities. In
the times series ofδθ/δθ ,ξ=0, the features of the three
CSS flow instability modes are clearly identified by whether
δθ/δθ ,ξ=0 at the first peak (the primary instability stage) is
more than, comparable to, or less thanδθ/δθ ,ξ=0 at the sec-
ond peak (the secondary instability stage). Furthermore, as
Ri increases up to 0.05, two peaks found in the time series
of δθ/δθ ,ξ=0 at Ri = 0.01 reduce to a single peak, which
occurs at the time when the coherent structures saturate. Fi-
nally, it is also found that the normalized mixedness thick-
nessδθ/δθ ,Ri=0.01, which is normalized byδm at Ri =0.01,
decreases as an exponential function ofRi at the turbulence
stage.
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