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INTRODUCTION
Dilute poly-disperse mixtures of liquid droplets and

gas phase flow are a common feature of both environ-
mental and technological processes. For example, cloud
physics, evaporative humidification and cooling, combus-
tion, surface coating, fire suppression, drug delivery, and
pesticide application. Engineering methods for the analy-
sis of such flows are increasingly taking the form of RANS
or LES based Computational Fluid Dynamics. However, a
recent review of numerical and experimental methods for
turbulent dispersed multiphase flow provided by Balachan-
dar & Eaton (2010) draws attention to the need for accu-
rate measurements of size dependent droplet velocities and
stresses to evaluate and develop such numerical models.
This is especially true for Eulerian methods of droplet trans-
port which offer advantages of computational efficiency and
coupling of the droplet phase to the surrounding chemical
species such as vapor, oxygen and products of combustion.
The transport and concentration field of the droplets de-
pends on the form and scale of the gas-phase turbulence
and the droplet inertia. Therefore, the turbulent flow cho-
sen for experimental study should be of practical scale and
of a form that emphasizes droplet interaction with sheared
turbulence.

In this study a liquid spray dispersed in a disk wake
flow is investigated. This type of flow is an idealization of
the wake formed behind atomization devices used to intro-
duce droplets into the gas phase. The single phase turbu-
lent wake behind a disk has been studied and turbulence
properties of these flows are well characterized in Hinze
(1959) and Johansson & George (2006). The two-phase
flow, however, has not been studied thoroughly. The em-
phasis in this work is on the spatial and temporal distribu-
tion of droplets and their transport by turbulence according
to their size class. The results presented support evaluation
and development of Eulerian models of two phase flow.

Gas-phase measurements were conducted using a 3-
component Phase Doppler Interferometer (PDI) together
with homogeneous seeding using micron size droplets.
Hotwire anemometry measurements were performed for
purposes of validation. The disk used in the experiment had
a diameter, D = 14cm, and was made with a sharp beveled
edge and streamlined supporting strut. An approach veloc-
ity, U in = 68 m/s was used to produce a Reynolds number
Re =U∞D/ν = 6.2×105.

Droplet-phase measurements included droplet size and
3 coincident components of droplet velocity made with the

PDI on cross-sections of the spray plume at two positions
downwind from the disk, x/D = 11 and x/D = 20.

MEAN FIELD
Radial profiles of the gas phase axial mean velocity,

Ux, measured with hotwire and PDI in single phase flow
are shown in Figure 1. The radial coordinate is normalized
by the scale, δ , which is defined in terms of the volumetric
flow displacement, δ 2U0 =

∫ (
U∞−Ux

)
rdr where U0 is the

maximum velocity deficit and U∞ is the free stream axial
velocity. For comparison, the experimental data from Jo-
hansson & George (2006) are also shown. The scatter in
data is mainly due to lack of axisymmetry and the small ve-
locity deficit of the wake which amounts to less than 10%
of U∞. In addition to the mean velocity measurements, ra-
dial profiles of Reynolds stress tensor of the gas phase were
also measured. The results agreed well with data from ax-
isymmetric single phase wakes described by Johansson &
George (2006) and Pope (2008). Radial profiles of mean
volume concentration plotted in Figure 1 define the spatial
extent of the spray plume.

The droplet size distribution, f (d), shown in Figure 2
was obtained from the shear layer at x/D = 20. The ma-
jority of droplets had a diameter in the range, 15µm < d <
100µm. The total flow rate at each cross section was deter-
mined by integrating the volume flux of droplets measured
across the spray plume and compared to the total liquid flow
rate. The relative error in total volume flow rate was 10.8%
at x/D = 11 and 16.0% at x/D = 20.

In our analysis droplets were grouped into categories
based on the Stokes number, St = τp/τk, where τp is the in-
ertial time scale of the droplets and τk is the estimated Kol-
mogorov time scale of the gas phase turbulence. The time
scale of the energy containing gas phase eddies is denoted
by τe. The range of volume concentration (Cv < 5×10−5)
and droplet Stokes number (Stk < 100) suggest that the in-
teraction of the droplets and the flow can be assumed to
have a weak two-way coupling Crowe (2006). This means
the interaction between the particles is negligible but the
interaction between the particles and flow can affect the tur-
bulence characteristics of the gas phase.

DROPLET STRESSES
A time series of the axial component of droplet veloc-

ity, Vx, from the shear layer, r/δ = 1, is plotted in Fig-
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ure 3. The record exhibits clusters of droplet arrivals and
significant skewness and kurtosis of the velocity. Unlike
the homogeneous seeding used to determine the gas phase
velocity statistics, the spray droplet distribution is inher-
ently inhomogeneous and considerable care must be taken
in the interpretation of its statistics. The arithmetic aver-
age of the time series in Figure 3 is considered to be flux
weighted (Tropea et al. (2007)). In the present work the
Reynolds, or ensemble, average was calculated form the ve-
locity records by weighting each velocity by its local inter-
arrival time. The Favre average of the droplet velocity,
which is used to calculate the turbulent droplet flux, is de-
fined in the present study as

Ṽ =
1

TCv

∫

T

CvV dt (1)

It was calculated from the velocity records by weighting
each droplet velocity by its liquid volume, the inter-arrival
time and the inverse of inter-droplet spacing (Bagherpour
(2015)). The Reynolds average components of the droplet
stress tensor were found to be highly anisotropic. Profiles of
droplet velocity covariance, vxvr/U2

0 , are shown in Figure 4.
At x/D= 11 the values for the droplet phase are comparable
to the gas phase shear stress in the shear layer but at x/D =
20 the droplet phase covariance has increased substantially
whereas the gas phase shear stress has not changed. This
trend is even more significant in the correlation coefficient,
vxvr/v′xv′r, shown in Figure 5. At x/D = 20, the values are
significantly higher for all the three droplet size classes than
the gas phase values.

The particle velocity covariance tensor has been stud-
ied using analytical methods by Tchen (1947) and Reeks
(2005) who derived analytical expressions for long-time
particle velocity covariances in a uniform shear flow. The
formula due to Tchen (1947) can be written in the form

viv j

uiu j
=

K
(1+αSte)n (2)

where α = τe
τL

is the ratio of the Eulerian integral time scale
of the gas phase turbulence to the Lagrangian time scale,
τL, of the particle motion and Ste = τd

τe
. In order to compare

the measurements with Tchen’s theory average values of
the droplet covariance and gas phase stresses were derived
from the shear layer (1 < r/δ < 1.5). Since the value of
Lagrangian time scale of the droplet motions is not known
the value α ∼ 1 was used. Figure 6 shows that the droplet
stresses depend strongly on Ste and are larger than the gas
phase stresses for Ste < 3. In order to achieve agreement
between theory and experiment it was found that K = 3 and
n = 2/3 whereas the theoretical values are K = 1 and n = 1.
The relatively high level of the droplet covariances may be
due to the inhomogeneous nature of the flow which affects
both sampling and mixing at large scales.

FLUCTUATIONS OF CONCENTRATION
The concentration of droplets is a random field vari-

able that is of considerable importance to modeling droplet
transport by the gas phase. However, the concentration field

is difficult to measure because of the inherent sample vari-
ance of point processes. The droplet distribution in turbu-
lent flows cannot be described as a Homogeneous Poisson
Process (HPP), due to both large and small scale clumping
of droplets caused by turbulent motions. A more appropri-
ate model of the droplet distribution is a doubly stochastic
Poisson process (or Cox process) in which the droplet con-
centration, C, is a random variable with the mean and vari-
ance of E(C) and var(C). The probability of having ∆N
droplets in a volume, V , for a Cox process is

P(∆N,Γ) = e−Γ (Γ)∆N

∆N!
(3)

where

Γ =
∫

V

CdV (4)

is a random variable because the concentration, C, depends
on other random physical properties of the flow, e.g. droplet
size and velocity. The expected value for the number of
droplets in a spatial region, V , is E(∆N) = E(Γ) and the
variance follows from the law of total variance

var(∆N) = var(Γ)+E(Γ) (5)

It follows from equation 5 that the index of dispersion for a
Cox process is larger than one

I =
var(∆N)

E(∆N)
≥ 1 (6)

whereas for an HPP, I = 1 since E(∆N) = var(∆N) = Γ.
To fit a Cox process to the data an assumption on the

distribution of concentration, C, must be made. A distri-
bution that ensures C > 0 and is frequently used to model
rate events in many applications is the log-normal distribu-
tion. To model droplet distribution as an LGCP, a Bayesian
method by Vanhatalo et al. (2013) was used. Once the pdf
is fitted to the data, both the mean concentration field, C,
and its instantaneous deviation from the mean, c, can be de-
termined. For example, the fitted pdf of concentration, C,
for the wake centreline is shown in Figure 7.

Using a LGCP fitted to each position in the flow al-
lowed the spatial distribution of variance of the volume con-
centration, c2

v , to be determined. Figure 8 shows radial pro-
files for 3 categories of Stokes number at x/D = 20. The
lowest Stokes number having the highest variance of vol-
ume concentration relative to its mean centreline concen-
tration. The local intensity, c′v

Cv
, is very high near the edge

of the plume for all Stokes numbers and, where Cv is low, it
exceeds 100%. The reader is reminded that in spite of the
high intensity of fluctuations the concentration is prevented
from being negative at any instant because of its log normal
distribution.

The variance of concentration fluctuation, c2
v , is gov-

erned by a balance (Sykes et al. (1984)) of production,
Pc2

v
= −2vicv

∂Cv
∂xi

, and turbulent diffusion. The dominant
production term in the present flow is the product of the tur-
bulent flux of concentration in the radial direction and the
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radial gradient of mean concentration.The areas of maxi-
mum production are roughly aligned with the maxima of
the mean concentration gradient. Figures 9 shows the pro-
file of production, Pc2

v
at axial positions, x/D = 11 and 20.

The production terms are greatest for droplets in the vicin-
ity of St = 14 which is also the size class with the highest
relative variance. The peaks of Pc2

v
are not well aligned with

the maxima of c2
v suggesting that turbulent diffusion is sig-

nificant.

DROPLET CLUSTERING
To study spatial clustering the two-point statistics of

the droplet distribution were evaluated using the Pair Cor-
relation Function, or PCF. It represents the probability of
finding a droplet within distance ∆x from a given droplet.
This probability is then normalized by the probability of
finding a pair of droplets with a Poisson distributed inter-
droplet distance ∆x with the same mean concentration. Fig-
ure 9 shows a sample PCF at r/δ = 0.6 for droplets in 3 cat-
egories of St. The spatial separation, ∆x, is normalized us-
ing the Kolmogorov length scale, lk. The PCF was derived
from PDI measurements using Taylor’s frozen turbulence
hypothesis so that the smallest measurable droplet separa-
tion is the length of the probe volume, lpv, which was in
the range of 5-40 times that of the Kolmogorov length scale
over the full range of droplet sizes. This imposed filtering
effect is a function of droplet diameter as shown in Figure 9.
Therefore the shape of PCF in the range 0 < ∆x/lk < 40
should be regarded as an artifact of the measurement.

The PCF shown in Figure 9 has characteristics consis-
tent with a soft-core process (Illian et al. (2008)), where the
maximum, gmax, is commonly interpreted as the most fre-
quent inter-droplet distance, ∆xgmax . At larger spatial sep-
arations than ∆xgmax we have g(∆x) → 1 which suggests
that it approaches an HPP. It has been shown by Saw et al.
(2008) that the PCF has the form of a power law function
in the range ∆x/lk < 10 for Stokes numbers in the range
0.01< St < 1.2. These works report that the power-law-like
region is followed by a plateau region ∆x/lk > 50, and a de-
crease at larger separations as observed in the current flow.
Other researchers have also found that the PCF is a func-
tion of Stokes number and Reynolds number (e.g. Collins
& Keswani (2004)).

The spatial extent of droplet clustering in the spray
plume is evident in the radial profiles of the maximum value
of the PCF, gmax, plotted in Figure 10. The values of gmax
in the shear layer are as high as 10 at x/D = 20. A charac-
teristic length scale of the clusters, ζ , can be defined for the
pair correlation function of droplets as following

g(∆x)−1
g(0)−1

= e−∆x/ζ (7)

where, ζ , is an average distance over which the position of
two droplets remain correlated. The radial profile of ζ in
Figure 11 shows that the scale of droplet aggregation in the
wake has a value approximating the integral length scale of
the gas phase turbulence, Le.

Vortex shedding is an important feature of wake flow
and it is of interest to evaluate whether it has a significant
effect on the droplet cluster formation. The power spec-
trum of the gas phase velocity in the shear layer shown in
(see Figure 12) has a prominent shedding frequency with a

Strouhal number, Sr = 0.15. Following on the recommen-
dations of Binder & Simpson (2015) for finding clustering
scales from a PCF we evaluated the power spectrum of the
pair correlation function. The power spectrum of PCF (not
shown here) also shows a clear peak at the scales of vor-
tex shedding. These scales were used to calculate the PCF
and the results are shown in Figure 13. This suggests that
droplet clustering is influenced by the presence of the vortex
shedding structures.

TURBULENT DROPLET TRANSPORT
To investigate the effect of the droplet inertia on droplet

transport the correlation between radial velocity fluctua-
tions, vr, and volume concentration fluctuations, cv, were
calculated. This was done using the Favre and Reynolds
average of the droplet velocity records obtained from the
PDI as

cvvr =Cv(Ṽ −V ) (8)

Profiles of the correlation coefficient, vrc
v′rc′ , in this way at

x/D=20 are shown in Figure 14. The correlation coeffi-
cients are in the range of (−0.2,0.2) which is significantly
less than one would expect for the correlation coefficient be-
tween fluctuations of a passive scalar and velocity in shear
flow. The sign of the correlation coefficient in the shear
layer has a sign opposite to the local gradient of volume
concentration where the latter is a maximum. This is consis-
tent with the common modeling approach in which the tur-
bulent flux is taken as proportional to the gradient of mean
concentration with the proportionality being dependent on
Stokes number. However, there are also significant regions
of negative vrc

v′rc′ near the origin that only partially overlap

with the negative gradient of Cv near the center of the wake.
In order to evaluate the radial diffusion coefficient, Drr,

it was assumed that the flow is axisymmetric and that the
gradients in radial direction are much stronger than the axial
direction. Using these assumptions

Drr =−vrcv/(
∂Cv

∂ r
) (9)

In presenting the results we follow the common practice of
normalizing Drr with the long time estimate of the diffu-
sion coefficient for passive contaminants in homogeneous
turbulence, τrrv2

r . Radial profiles of Drr/τrrv2
r are shown in

Figure 15 for x/D = 11 and 20. The diffusion coefficient
varies significantly across the wake in both magnitude and
sign; making the validity of a gradient transport model in
this inhomogeneous flow questionable.

An estimate of the dependence of Drr/τrrv2
r on Ste was

made by collecting values near the maximum of the con-
centration gradient. The results shown in Figure 16 indicate
that the diffusion of the droplets depends strongly on Ste
and it is nearly zero for the largest droplets in the flow be-
ing studied.
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Figure 1. Radial profile of U0 measured with hotwire and
PDI in the wake of the disk at two axial positions. Solid
lines show the velocity profiles from Johansson & George
(2006). Radial profiles of average volume concentration of
liquid spray droplets measured with PDI.
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Figure 2. Probability density function, f (d), of droplet
size, d, measured in the shear layer at r/δ = 1 and x/D =

20. On the wake centreline the shape of f (d) was found to
be approximately log-normal.
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Figure 3. Time series of droplet axial velocity measured
in the shear layer of the wake at x/D = 11. Record length
corresponds to 600 τe.

Figure 4. Radial profiles of covariance of the axial and
radial droplet velocities at: (a) x/D = 11 and (b) x/D = 20.
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Figure 5. Radial profile of the correlation coefficient be-
tween axial and radial droplet velocity at: (a) x/D = 11 and
(b) x/D = 20.

Figure 6. Ratio of the measured components of the droplet
stress in the shear layer normalized by the corresponding
components of the gas phase Reynolds stress. Solid line
represents a modified form of the Tchen (1947) theory for
homogeneous turbulence.

Figure 7. Fitted log-normal Cox Process to the spatial dis-
tribution of droplets on the wake centerline at x/D = 11.

Figure 8. Radial profile of (a) volume concentration vari-
ance and (b) production of the concentration variance in the
disk wake at x/D = 20. Cv0 is the centerline value of mean
volume concentration for St = 14.

Figure 9. The pair correlation function, g(∆x), for 3 cate-
gories of Stokes number in the shear layer at x/D = 11. The
solid thick line, P(∆x), shows the probability of rejection of
a droplet pair at distance ∆x by the PDI instrument. This
filtering effect sets the lower limit of ∆x for measurement of
g(∆x) in the present flow.
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Figure 10. Radial distribution of gmax for the entire
droplet population at two axial positions. The shear layer
is located in the range 1 < r/δ < 2.
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Figure 11. Length scale of the pair correlation function,
ζ , compared to the integral length scale of axial gas phase
velocity fluctuations , Le.
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Figure 12. Power spectra of the axial component of gas
phase velocity measured by PDI and hotwire at r/δ = 1
and x/D = 11.

Figure 13. Power spectrum of pair correlation function at
r/δ = 1 and x/D = 11.

Figure 14. Radial profiles of correlation coefficient,
vrcv/(v′rc′v), between fluctuations of radial velocity and vol-
ume concentration at: (a) x/D = 11 and (b) x/D = 20.

Figure 15. Profiles of the radial coefficient of concentra-
tion diffusivity, Drr at: (a) x/D = 11 and x/D = 20.Values
are normalized by the theoretical diffusivity of a passive
scalar in homogeneous turbulence.

Figure 16. The dependence of the radial component of
concentration diffusivity, Drr , on Stokes number. Values
measured in the shear layer at x/D = 11 and x/D = 20.
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