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ABSTRACT 

Fluid mixing by turbulent motion occurs in many 

technical devices and has a strong impact on mass transfer, 

heat-transfer and chemical reaction (see e.g. Peng and 

Davidson (2002), Younis et al. (2005), Rossi (2010)). In 

Large Eddy Simulation (LES) the turbulent subgrid flux has 

to be modeled. Many simulations for heat or mass transfer 

rely on the classical linear eddy diffusivity approach which is 

in many cases not appropriate. As an example Fig.1 shows 

that even the simple plane jet shear flow considered in this 

work features counter-gradient transport. Similar to 

momentum transport in LES, the scale similarity model for 

SGS scalar flux is known to correlate well with the stresses 

evaluated from DNS (Peng and Davidson (2002)). However 

the model does not provide enough dissipation. Recently 

Anderson and Domaradzki (2012) analysed the interscale 

energy transfer of the scale similarity model in the context of 

momentum transport and, based on the results, proposed a 

new SGS model. In the present work this model will be 

modified to account for LES scalar fluxes. It will be analysed 

a-priori using a newly generated plane jet DNS database at 

Re=10000. 

 

(a) 

 
 
(b) 

 
Figure 1. Instantaneous views of the jet flow. (a) Passive 

scalar distribution. (b) Cosine of the angle between the 

vectors −∇ 𝑓 ̅and 𝑢𝑓̅̅̅̅ − 𝑢̅𝑓.̅ Brown color indicates a value of 

1 and blue color a value of −1. 

 

PLANE JET DNS DATABASE 

For the a-priori analysis performed in this work a 

turbulent plane jet is simulated for a Reynolds number  𝑅𝑒 =
(𝑈0𝐷)/𝜈 of 10000 where 𝑈0 denotes the bulk velocity, D the 

nozzle diameter and ν the kinematic viscosity. The 

incompressible Navier-Stokes equations are solved together 

with the transport equation for a passive scalar on a staggered 

grid. A finite volume technique with 2nd order central 

differences and a 3rd order Runge Kutta time advancement 

are used.  

 

The computational domain spans 20D in axial (x), 6.4D 

in homogenous (y) and 20D in lateral direction (z). The 

domain is resolved with 1200×256×1000=307.2⋅ 106  grid 

points. The nozzle is resolved with 80 cells and the grid is 

stretched towards the lateral boundaries (see Fig. 2).  

 

 

 

 
 

Figure 2. Sketch of the flow (top) and the computational 

domain (bottom). 

 

The turbulent inflow data is generated using filtered 

random data. Further details on the numerical scheme, the 

configuration (at a lower Reynolds number) and the boundary 

conditions are given in Klein et al. (2003a, 2003b). 
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Figure 3: Mean axial velocity (top) and shear stress (bottom) 

normalized with the centerline velocity 𝑈𝑐𝑙  plotted in 

spanwise direction, normalized with the jet half width 𝑧𝑈,1/2.  

 

 
Figure 4: Mean scalar profiles (top) and fluctuations (bot-

tom) normalized with the centerline value 𝑓𝑐𝑙  plotted in 

spanwise direction, normalized with the jet half width 𝑧𝑓,1/2. 

 

Figures 3 and 4 show selected self-similar profiles at two 

different axial locations together with available experimental 

(Gutmark and Wygnansky 1976 (GW), Namer and Ötügen 

1988 (NÖ)) or DNS data (Stanley et al. 2002 (SSM)) in order 

to demonstrate the accuracy of the DNS solution. 

 

MODEL FORMULATION 

In order to derive the model the scalar and turbulent 

kinetic energy spectrum is, following Anderson and 

Domaradzki,  split in 3 different regions denoting smallest 

𝑅3 , intermediate 𝑅2  and large scales 𝑅1  (see Fig. 5). 𝑅3 

represents the scales unresolved by the mesh. Consequently 

the passive scalar is split into 𝑓 = 𝑓1 + 𝑓2 + 𝑓3 and the same 

decomposition is used for velocity. For each region the 

quantity 𝑓can be defined using two filtering levels such that 

𝑓1 can be represented by 𝑓̅̂, 𝑓2 by 𝑓̅ − 𝑓̅̂ and 𝑓3 by 𝑓 − 𝑓.̅  

 

 

Figure 5: Sketch of the energy spectrum and its 

decomposition into different regions.  

 

The product 𝑢𝑖
𝑙𝑓𝑘  of the individual contributions can 

again be attributed to a scale range 𝑚  and the resulting 

expression is denoted 𝑁𝑖
𝑙𝑘𝑚. Information for range 𝑅3 is not 

available and the idea of the model is to remove the key 

production terms in range 𝑅2.  This results, following the 

original work, in the following model expression  

𝜏𝑗 ≔ 𝑢𝑗𝑓̅̅ ̅̅ − 𝑢𝑗̅  𝑓̅ ≈ −𝑁𝑗
112 − 𝑁𝑗

122 = 

         − (𝑓̅̂𝑢𝑗̂̅ − 𝑓̅̂𝑢𝑗̂̅
̂

) − (𝑓̅̂ 𝑢𝑗′̅̅̅̅ − 𝑓̅̂𝑢𝑗̅′
̂

)     

(1) 

where 𝑢𝑗̅′ ≔ 𝑢𝑗̅ − 𝑢𝑗̂̅ . However this model is not Galilei 

invariant and has to be replaced with one of the following two 

expressions: 

𝜏𝑗
ADM ≈ −𝑁𝑗

112,∗ − 𝑁𝑗
122 =  

          − (𝑓̅̂̂ 𝑢𝑗̂̅
̂ − 𝑓̅̂𝑢𝑗̂̅

̂
) − (𝑓̅̂ 𝑢𝑗̅′ − 𝑓̅̂𝑢𝑗̅′

̂
)   

(2) 

𝜏𝑗 ≈ − (𝑓̅̂̂ 𝑢𝑗̅ − 𝑓̅̂𝑢𝑗̅ 
̂

)   
(3) 

Details are for the sake of brevity omitted and the reader is 

referred to the work of Anderson and Domaradzki. The model 

given by eq. (2) wil henceforth be denoted ADM model. The 

model represented by eq. (3) did show very poor correlation 

performance. For all primary and secondary filter width 

investigated in this work the correlation coefficient was 

smaller than 0.15. Hence, despite its compact form, it will not 
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be considered further.  Still another model can be proposed 

starting from 𝜏𝑗 ≈ −𝑁𝑗
112 − 𝑁𝑗

122 − 𝑁212 which is, after 

manipulating some of the terms also Galilei invariant:   

𝜏𝑗
ADS ≈ 𝑓̅̂ 𝑢𝑗̅

̂
− 𝑓̅̂𝑢𝑗̂̅ + 𝑢𝑗̂̅𝑓̅̂ − 𝑓̅̂𝑢𝑗̂̅

̂
       

(4) 

The model will be denoted ADS model due to its symmetry 

with respect to the roles of 𝑓 and 𝑢. It is interesting to note 

that, if the scalar variable 𝑓  is replaced with the velocity 

component 𝑢𝑖 and the expression is multiplied with density,  

a model for momentum transport is obtained which is 

symmetric and Galilei invariant even for compressible flows. 

 

ANALYSIS AND RESULTS 

    For the purpose of the current analysis, the DNS data has 

been explicitly filtered using a Gaussian filter kernel of the 

form 𝐺(𝑟) = (6/𝜋Δ2)3/2 exp(−6 𝑟 ⋅ 𝑟 /Δ2). Results will be 

presented for five different filter widths corresponding to Δ =
2ΔDNS, 4ΔDNS, 8ΔDNS, 16ΔDNS, 32ΔDNS or in terms of nozzle 

diameter Δ = D/20, D/10, D/5, D/2.5. The secondary filter 

is given by the expression  

𝑓𝑖,𝑗,𝑘 = ∑ 𝑎𝑑𝑖𝑎𝑑𝑗𝑎𝑑𝑘 ⋅ 𝑓𝑖+𝑑𝑖,𝑗+𝑑𝑗,𝑘+𝑑𝑘

𝑑𝑖,𝑑𝑗,𝑑𝑘=−1,1

     

    (𝑎𝑑−1, 𝑎𝑑0, 𝑎𝑑1) = (𝐶, 1 − 2𝐶, 𝐶) 

     

(5) 

 

where 𝐶 is a free positive parameter with 𝐶 ≤ 1/3. Based on 

the analysis of channel flow LES data Anderson and 

Domaradzki suggest to use 𝐶 = 1/12. 

 

LES models need to accurately capture the local behavior of 

scalar flux components and hence the Pearson correlation 

coefficient is in this work considered an important indicator 

for the quality of scalar flux models and should be as close to 

unity as possible. Before comparing different models with 

each other the influence of the secondary filter width in the 

models ADM and ADS is investigated. Results are 

exemplarily shown for two primary filter widths i.e. Δ =
4ΔDNS, 16ΔDNS  and four different parameters 𝐶  of the 

secondary filter. 

 

Table 1. Correlation between modelled scalar flux in axial 

direction using the ADM model (see eq. (2)) and the ADS 

model (see eq. (4)) and DNS flux for two primary filter 

widths and different filter parameters C.  

 

 ADM ADS 

C 
Δ

ΔDNS

= 4 
Δ

ΔDNS

= 16 
Δ

ΔDNS

= 4 
Δ

ΔDNS

= 16 

1/6 0.15 0.15 0.80 0.70 

1/12 0.30 0.29 0.82 0.72 

1/24 0.52 0.50 0.82 0.71 

1/48 0.71 0.64 0.82 0.70 

 

 

Table 1 shows a relatively weak dependence of the correlation 

magnitude on the primary filter for the two filter widths 

considered here, in particular for the ADM model. However, 

it can be seen that there is a pronounced sensitivity of the 

correlation coefficient on the filter parameter 𝐶 for the ADM 

model, whereas the ADS model is considerably less sensitive 

to the width of the secondary filter and seems to show the best 

results for 𝐶 = 1/12. In order to investigate this behavior in 

more detail, Table 2 shows the ratio of the Euclidian length of 

the vectors 𝑁𝑗
112,∗

 and 𝑁𝑗
122 in equation (2).  

 

Table 2. Ratio of the Euclidian length of the vectors 𝑁𝑗
112,∗

 

and 𝑁𝑗
122 for two primary filter widths and different filter 

parameters C. 

 

C 
Δ

ΔDNS

= 4 
Δ

ΔDNS

= 16 

1/6 0.16 0.17 

1/12 0.33 0.35 

1/24 0.70 0.79 

1/48 1.43 1.61 

 

It can be clearly seen that 𝑁𝑗
112,∗

 dominates over 𝑁𝑗
122  for 

small test filter width which can be understood from the fact 

that 𝑁𝑗
122 contains the expression   𝑢𝑗′̅̅̅̅ ≔ 𝑢𝑗̅ − 𝑢𝑗̂̅  which 

obviously approaches zero if region 𝑅2  of the intermediate 

scales becomes more and more narrow. As a result of this, the 

model is dominated by the term  𝑁𝑗
112,∗

 which looks similar 

to a scale similarity model given by the expression below: 

 

     𝜏𝑗
SSM ≈ 𝑓̅ 𝑢𝑗̅

̂ − 𝑓̅̂ 𝑢𝑗̂̅      (6) 

  

For small values of 𝐶  the second term −𝑁𝑗
122 , which 

according to Anderson and Domaradzki (2012) obviously 

results in an improved dissipation characteristic of the model, 

is prevalent. The correlation coefficient of the expression 

−𝑁𝑗
112,∗−𝑁𝑗

122  approaches for decreasing values of 𝐶  the 

correlation coefficients of the scale similarity model (SSM) 

which are shown in Table 3 but are always to some extend 

smaller. 

 

Table 3. Correlation between modelled scalar flux in axial 

direction using SSM model (see eq. (6)) and DNS flux for 

two primary filter widths and different filter parameters C.  

 

 SSM 

C 
Δ

ΔDNS

= 4 
Δ

ΔDNS

= 16 

1/6 0.80 0.71 

1/12 0.81 0.70 

1/24 0.81 0.69 

1/48 0.81 0.69 

 

Table 3 also shows that the SSM model is not very sensitive 

to the second filter. In all results presented below we will 

therefore use the value 𝐶 = 1/12 whenever the filter given 

by eq. (5) is used. It is important to keep in mind that the 

correlation coefficient for the ADM model will improve when 

a smaller 𝐶  is used. However, since the model converges 

towards the SSM model in this case it is not required to show 

the results separately. Final assessment of the models and the 
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magnitude of the parameter 𝐶  has to be done using a-

posteriori analysis. 

For comparison results for the ADM, ADS and SSM model 

will be shown together with those for the classical gradient 

flux approximation (GFM) using 𝐶𝑠 = 0.1,    𝑆𝑐𝑡 = 1.0 

        𝜏𝑗
GFM ≈ −

𝜇𝑡

𝑆𝑐𝑡

𝜕𝑓̅  

𝜕𝑥𝑖
,   𝜇𝑡 = (𝐶𝑠Δ)2√2 𝑆𝑖𝑗

̅̅̅̅  𝑆𝑖𝑗
̅̅̅̅     

(7) 

 

(a)     

(b)     

(c)     

 
Figure 6: Correlation coefficient between 𝜏𝑙,𝑀𝑜𝑑  and 𝜏𝑙,𝐷𝑁𝑆 

for the four different models for five different filter widths: 

Δ = 2ΔDNS  ( ); Δ = 4ΔDNS  ( ); Δ = 8ΔDNS  ( ); Δ =
16ΔDNS  ( ) and Δ = 32ΔDNS ( ); (a) 𝑥 -direction; (b) 𝑦 -

direction; (c) 𝑧-direction. 

The analysis of the subgrid scale models is in the following 

split into two parts. The correlation coefficient provides local 

information about the fluctuation and alignment of scalar flux 

and the corresponding model expression. If the correlation 

coefficients are calculated for each individual component of 

the scalar flux this will be denoted vector level analysis.  

 

Fig. 6 shows the correlation coefficients for all models for 

five different filter widths. As expected, in general the 

correlation strength decreases with increasing filter width. An 

exception is the GFM model in 𝜏1, 𝜏3  direction. The ADM 

model shows overall low correlations for the chosen 

secondary filter. We note again that for smaller filter size the 

correlation strength would increase. However, since the 

model behavior approaches that of the SSM model in this case, 

these results are not shown separately. The GFM model 

performs in particular poor in direction  𝜏2 where the flow is 

statistically homogeneous. The best correlations are achieved 

by the SSM and ADS models even for relatively large filter 

size.  

 

 

For passive scalar transport and under the assumption of local 

equilibrium the expression 𝜏𝑖𝜕𝑓/̅𝜕𝑥𝑖    represents the subfilter 

dissipation rate (Fabre and Balarac (2011)). The 

corresponding analysis at the scalar level will give some 

information in regards of the dissipation characteristics of the 

model.  

 

 
Figure 7: Correlation coefficient between 𝜏𝑖𝜕𝑓/̅𝜕𝑥𝑖  calcu-

lated from the four different model expressions and DNS data 

for five different filter widths (legend as in Fig. 6). 

 

Fig. 7 shows the correlation coefficients at the scalar level. 

The SSM and ADS model depict a performance similar to the 

vector level analysis. However, the GFM and ADM model 

show considerably stronger correlations, which might be an 

indication for their strength to represent dissipative effects. 

 

The correlation is only a measure of linear dependence 

between two quantities and hence invariant under 

multiplication of the model with a constant. The second step 
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in the analysis is therefore to compare the magnitude of 

modelled scalar flux with the magnitude of its corresponding 

DNS value. Although eqs. (2),(4),(6) do not contain model 

constants it is possible to scale these models. In a-priori 

analysis the model coefficient can be determined 

conveniently using a least square approach. Eq. (8) results in 

a global model coefficient whereas eq. (9) gives a local 

approximation.  

 

CMod =
∑ ∑ 𝜏𝑙,𝑀𝑜𝑑 × 𝜏𝑙,𝐷𝑁𝑆𝑙=1,2,3𝑖𝑗𝑘

∑ ∑ 𝜏𝑙,𝐷𝑁𝑆𝑙=1,2,3 × 𝜏𝑙,𝐷𝑁𝑆𝑖𝑗𝑘
 

(8) 

 

CMod,loc =
∑ 𝜏𝑙,𝑀𝑜𝑑 × 𝜏𝑙,𝐷𝑁𝑆𝑙=1,2,3

∑ 𝜏𝑙,𝐷𝑁𝑆𝑙=1,2,3 × 𝜏𝑙,𝐷𝑁𝑆
 

(9) 

 

Finally eq. (10) is used to measure the relative error between 

modeled scalar flux and the corresponding value evaluated 

from DNS.  

ϵrel =
∑ ∑ |𝜏𝑙𝑙,𝑀𝑜𝑑 − 𝜏𝑙,𝐷𝑁𝑆|𝑙=1,2,3𝑖𝑗𝑘

∑ ∑ |𝜏𝑙,𝐷𝑁𝑆|𝑙=1,2,3𝑖𝑗𝑘

 
(10) 

 

(a)  

(b)  

 

 
Figure 8: (a) Relative error 𝜖𝑟𝑒𝑙 for the four different models 

after scaling them with global multipliers 𝐶𝑚𝑜𝑑  for five 

different filter widths: Δ = 2ΔDNS ( ); Δ = 4ΔDNS ( ); Δ =
8ΔDNS ( );Δ = 16ΔDNS ( ) and Δ = 32ΔDNS( ); (b) Global 

model multipliers 𝐶𝑚𝑜𝑑  (see eq. (9)). Note that 𝐶𝐺𝐹𝑀  is 

multiplied with 0.1. 

 

Results for the relative error of the different models together 

with the optimal global multipliers are show in Figs 8 (a) and 

(b) respectively. As can be seen from Fig. 8 (b) the optimal 

multipliers increase with increasing filter width for all 

models. It is noted that the Smagorinsky constant was 

obviously chosen too small in the beginning which explains 

the upscaling (note the different scale for the GFM model in 

Fig 8 (b)). For the SSM and ADS model 𝐶𝑆𝑆𝑀 and 𝐶𝐴𝐷𝑆 are at 

the order of 1.0 whereas the ADM model seems to require a 

somewhat smaller model multiplier. The errors shown in Fig. 

8 (a) are relatively large. The ADS model shows the smallest 

deviation to the DNS data but the difference to the SSM 

model is hardly visible.  

Using the local multiplies according to eq. (9) the relative 

errors decrease remarkably as depicted in Fig 9 (a). The 

performance of the ADM model is now in between the GFM 

model and the models ADM and ADS. Whereas, the error of 

the GFM model is nearly independent of the filter width, the 

other errors approach zero for very small filter width. 

 

(a)  

(b)  

 

Figure 9: (a) Relative error 𝜖𝑟𝑒𝑙 for the four different models 

after scaling them with local multipliers 𝐶𝑚𝑜𝑑,𝑙𝑜𝑐  (see eq. 

(10)) for five different filter widths (legend as in Fig. 8). (b) 

Relative error 𝜖𝑟𝑒𝑙  if 𝐶𝑚𝑜𝑑,𝑙𝑜𝑐  is averaged in homogeneous 

direction (see eq. (11)). 
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Eqs. (8) and (9) cannot be used in a real LES. Instead a 

dynamic evaluation of the model parameter is required. The 

calculation of the model parameter typically requires a 

regularization in order to ensure the models good numerical 

properties. For this type of flow an averaging in the 

homogeneous 𝑦-direction is an obvious choice which results 

in a model parameter that is dependent on 𝑥 and 𝑧-direction 

only: 

 

CMod,ik =
∑ CMod,loc(𝑖, 𝑗, 𝑘)𝑗

𝑁𝑗
 

(12) 

Comparing Fig. 9 (b) and Fig. 8 (a) shows however that the 

advantage of the local determination of the model parameter 

is lost after averaging in 𝑦-direction. 

 
CONCLUSIONS 

       A direct numerical simulation of flow and mixing of a 

spatially developing plane jet at Re=10000 has been 

performed. The results show that the numerical scheme 

successfully captures the physics of this shear flow.  

A new LES subgrid scale model for momentum transport, 

recently proposed by Anderson and Domaradzki (2012), has 

been modified to account for turbulent scalar SGS flux 

(ADM). Results indicate a pronounced sensitivity of the 

correlation strength on the width of the test filter. Anderson 

and Domaradzki demonstrated that their model shows 

considerable improvements compared with predictions of 

conventional scale similarity models. In particular the model 

is better suited to account for dissipative effects. Hence it is 

expected that there is a tradeoff between correlation strength 

observed in a-priori analysis and dissipation characteristics in 

a real LES. The model performance evaluated from a-priori 

analysis can be improved by choosing a smaller secondary 

filter width. In that case the ADM model approaches the 

behaviour of the SSM model. Furthermore a symmetric 

version of the ADM model has been suggested. The 

performance of this ADS model is very similar to the SSM 

model with very small advantages for the ADS model. 

Final evaluation of the model performance has to come from  

a-posteriori analysis which is beyond the scope of this work 

but also part of the work in progress. 
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