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INTRODUCTION

Turbulent flows exhibit an intrinsic multiscale behav-
ior and are characterized by a large number of degrees of
freedom interacting nonlinearly. Observations, even at large
Reynolds number, show self-organization of the flow into
coherent vortices (Brown and Roshko, 1974), which are su-
perimposed to a random background flow (She et al., 1991).
This motivates to split turbulent flows into these two contri-
butions, which are both multiscale and exhibit no scale sep-
aration. Multiscale decompositions, such as wavelet bases,
are suitable tools for extracting coherent vortices. The si-
multaneous scale and space localization of wavelets allows
an efficient representation of such intermittent data. In par-
ticular, orthogonal wavelets allow fast wavelet transforma-
tion. Using orthogonal wavelets, a coherent vorticity extrac-
tion method was proposed for isotropic turbulence by Farge
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et al. (2001). It has been applied to different types of hy-
drodynamic turbulent flows, e.g., mixing layers (Schneider
et al., 2005) and boundary layers (Khujadze et al., 2011),
which present turbulent and non-turbulent regions.

The extraction is performed in wavelet space. The flow
vorticity is decomposed into an orthogonal wavelet series
and we apply a thresholding to split the coefficients into
two sets. The coherent vorticity, reconstructed from the
few strongest wavelet coefficients, well preserves the to-
tal turbulent statistics, while the incoherent vorticity, re-
constructed from the remaining large majority of the coeffi-
cients that are very weak, corresponds to a noise-like back-
ground flow. The coherent and incoherent velocity fields
are reconstructed from the coherent and incoherent vortic-
ity fields, respectively, using the Biot-Savart relation. Thus,
we can efficiently examine the role of coherent vorticity in
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turbulence. Other conventional methods to identify orga-
nized vortices in turbulence, such as the Q-criterion and A,
method (Jeong et al., 1997), have difficulties to get scale
information of the vortices and analyze precisely the contri-
bution of the coherent vorticity. Since those methods work
in physical space, they do not preserve the smoothness of
the vorticity they extract due to edge effects.

In the present work, we consider a turbulent channel
flow bounded by two parallel walls. For coherent vorticity
extraction, we propose an anisotropic wavelet decomposi-
tion which allows us to take into account the no-slip bound-
ary condition at the walls. Statistical analyses of the co-
herent and incoherent flow contributions are performed and
compared with those of the total flow. In particular the con-
tribution of the coherent flow onto the nonlinear dynamics
is assessed. This is the first case for the extraction method
using orthogonal wavelets to take the solid boundary into
account, and to obtain these contributions.

METHODOLOGY

We analyze direct numerical simulation (DNS) data of
a fully developed turbulent channel flow at friction-velocity
based Reynolds number Re; = 320 (Morishita et al., 2011).
Here, Rer = uzd /v, uz is the friction-velocity, d is the chan-
nel half-width, and v is the kinematic viscosity. Hereafter,
we normalized the length by d. The flow obeys the incom-
pressible Navier-Stokes equations under periodic boundary
conditions with fundamental domain size 27 and 7 in two
wall-parallel directions, the streamwise (x;) direction and
spanwise (x3) direction respectively. No-slip boundary con-
ditions are imposed on the walls at x, = 1. The DNS
was performed with a spectral method, using Fourier se-
ries in the wall-parallel directions and Chebyshev polyno-
mials in the wall-normal direction. In each of the parallel
directions, there are 256 equidistant grid points, while in the
wall-normal direction, we have 192 Chebyshev grid points.
The flow field at one time instant is first interpolated onto
4096 equidistant grid points in the wall-normal direction to
ensure that the structures near the walls are sufficiently re-
solved.

To extract coherent vorticity, an orthogonal anisotropic
wavelet decomposition is applied which accounts for the
flow anisotropy by using different scales in the wall-normal
direction and in the wall-parallel directions. The orthogonal
anisotropic wavelets used here combine two-dimensional
wavelets Wq(x1,x3), based on periodized Coiflet 30
wavelets with ten vanishing moments, in the wall-parallel
direction and one-dimensional Cohen-Daubechies-Jawerth-
Vial (CDJV) interval wavelets Wg(x2), having three van-
ishing moments (Cohen, Daubechies & Vial, 1993; Co-
hen, Daubechies, Jawerth & Vial, 1993), in the wall-
normal direction. The wavelet transform unfolds any three-
dimensional field into scale, positions, and directions. The
subscripts (¢, 8) show the multi-index (jj, L, jv,i1,02,i3)
denoting the mixed scale (27/#,27/v), the position (27 x
27Jniy,2 x 2 Wiy — 1,m x 27Jniz) and the three direc-
tions u = 1,2,3 of yy(x1,x3). Here, j, =0,---,7, j, =
Jo,- 11, =0,---. 20— 1 (n=1,3),and i =0, - - -, 2+ —
1. We take jo as 3, the minimum number satisfying 2/0—1 >
M, where M is the number of the vanishing moments of the
CDJV wavelets,

The flow vorticity @ is then decomposed into orthog-
onal anisotropic wavelets. The coherent vorticity @, is
reconstructed after nonlinearly filtering the wavelet coeffi-

Figure 1. Visualization of total vorticity @™ (top), coher-
ent vorticity a);r (middle) and incoherent vorticity wjf (bot-
tom). Isosurfaces |@"| = |@} | = 10.0 and |®] | = 3.5 are
presented, respectively.

cients, namely by retaining only about 0.15% of them that
are the most intense. The incoherent vorticity @; is obtained
by subtraction, ®; = @ — @.. The two fields, ®. and @;, are
orthogonal, which ensures a separation of the total enstro-
phy into Z = Z. 4+ Z;. Then we use Biot—Savart’s relation
U = —V~%(V x @) to reconstruct the coherent velocity U
and the incoherent velocity U; for the coherent and incoher-
ent vorticity, respectively.

NUMERICAL RESULTS

In the numerical results, discussed below, the quanti-
ties with the superscript * are non-dimensionalized by the
wall unit u; and v. Figure 1 (top) shows the modulus of
vorticity of the total flow. The flow exhibits intense vortex
tubes near the walls, as observed in previous numerical ex-
periments (e.g, Blackburn et al., 1996). Isosurfaces of the



Figure 2. Visualization of total vorticity @ (top), coher-
ent vorticity @, (middle) and incoherent vorticity @; (bot-
tom). Isosurfaces |@1| = |0f] = (j0*]) +3((|@*]| -
(|@F))*)!/? and |0} | = (lof |) +3((| @] | - (o] )"/
are presented, respectively, where (-) shows x,-dependent
spatial average of - over the x; —x3 plane.

modulus of the coherent and incoherent vorticity are shown
in Figs. 1 (middle) and (bottom), respectively. The value
of the isosurface chosen is the same for the total and co-
herent vorticity, while it has been reduced by about a factor
3 for the incoherent vorticity whose fluctuations are much
smaller.

We find that the coherent vorticity represented by
0.15% of the wavelet coefficients 2562 x 4096, i.e., 3.3% of
the original grid points 256> x 192, retains the vortex tubes
of the turbulent flow. The coherent flow preserves 99.9%
of the total energy and 99.5% of the total enstrophy. In
contrast, the incoherent vorticity, which consists of the re-
maining majority of the coefficients, is structureless. It cor-
responds to a noise-like incoherent background flow, which
has little energy and enstrophy. Figure 2 shows a different

Figure 3. Scale-by-scale compression rates C(jj,jy) at
the mixed scales (jj,jv). (top) C(jn,jv) vs. jj for repre-
sentative scales j,, and (bottom) C(jp, jv) vs. j, for repre-
sentative ones jj,.

type of visualization of vorticity. The vorticity structure in
the core region is visualized, using x,-dependent isosurface
values of the modulus of the total, coherent and incoherent
vorticity. It is also found that tube-like vortices are well pre-
served by the coherent vorticity and the incoherent vorticity
is almost structureless.

The scale-by-scale compression rate C(jj, jy) can be
defined by the percentage of coefficients corresponding to
the retained coherent part at the mixed scale (27/#,27/v).
In Fig. 3, we find that almost all coefficients are retained at
large scales, i.e., for small j, and small j,. It is seen that
C(jn,jv) decays with decreasing scales, i.e., increasing j;
or j,. The extraction method thus becomes more efficients
as the scales become smaller.

Let us decompose the flow velocity U;(x1,x2,x3,¢) as
Uj = Uj(xp,1) +uj(x1,x2,x3,1), where U; is the mean ve-
locity defined by U; = (U;), and u; is the velocity fluctua-
tion. Here, (-) stands for averaging over the x; — x3 plane at
each xp. The coherent flow (figure omitted) excellently pre-
serves the mean flow in the streamwise direction, U, while
the incoherent mean flow is very weak and thus negligible.
In Fig. 4, we show the x; -dependence of the root-mean-
square (rms) of u}' (j =1,2,3) for the total, coherent and
incoherent flows. The coherent flow well retains the rms
values of the total flow. The rms values of the incoherent
flow are found to be small enough compared to those of the
total one.

Figure 5 shows the energy spectra of total, coherent,
and incoherent streamwise-velocity fluctuations, u1, in its
longitudinal direction at a representative location x; in the
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Figure 4. x}'—dependence of the root-mean-square of ve-
locity components (uf ,u3 ,uf) for total, coherent and in-

coherent flows.

core region. The one-dimensional spectrum is denoted by
E(k1,x2), where kq is the wavenumber in the streamwise di-
rection. The coherent energy spectrum is in good agreement
with the total one, while the incoherent kinetic energy spec-
trum is almost flat, that is, close to k°. This flat spectrum
may be attributed to equipartition of incoherent energy that
gives rise to spatially decorrelation of the incoherent flow.

Finally, we examine contributions of the coherent flow
on the nonlinear dynamics. Figure 6 shows production P,
turbulent diffusion T and pressure diffusion IT¢ vs. x}“ for
the total and coherent flows. These quantities are defined in
the budget equation for (uj' u;") /2 per unit mass (Mansour
et al., 1988):

P= 7<u}'u?')8[07", (1)
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Figure 5. Energy spectra of the streamwise velocity fluc-
tuations in the streamwise direction; E(k;,x,)/{(g)v3}1/4
vs. kin(xz) at xI = 310.6 in the core region. Here, (€)
is the mean energy dissipation rate per unit mass at x, and
n(x2) = {v3/(e)}/*. The total, coherent and incoherent
spectra are plotted in green, red and blue, respectively.
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Figure 6. x;' -dependence of production P, turbulent diffu-
sion T, and pressure diffusion IT¢ for the total and coherent
flows.

Y = — 3 (p*u;), 3)

where d; = d/dx;, and the repeated subscripts imply sum-
mation over 1,2,3. The results show that the nonlinear dy-
namics measured by these quantities are fully captured by
the coherent flow.

CONCLUSION

Coherent vorticity has been extracted out of turbulent
channel flow computed at a given time instant, using three-
dimensional anisotropic orthogonal wavelets. The coherent
vorticity is found to retain the vortex tubes of the turbu-
lent flow while requiring only 3% percent of the degrees of
freedom. The remaining majority of the coefficients corre-
sponds to a structureless, i.e., noise-like incoherent back-
ground flow. We find that the coherent contributions well
preserve not only the turbulent statistics, e.g., energy, en-
strophy and energy spectra, but also the nonlinear dynamics



of the flow. This work would be encouraging for devel-
oping coherent vorticity simulation (CVS) of turbulence in
the presence of walls. CVS is a deterministic computation
of the coherent flow evolution using an adaptive orthogonal
wavelet basis (Farge and Schneider, 2001). The influence of
the incoherent background flow is neglected to model turbu-
lent dissipation. Applications of CVS to turbulent mixing
layers and isotropic turbulence can be found in Schneider et
al., 2005 and Okamoto et al., 2011, respectively.
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