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ABSTRACT
The statistical scaling properties of a self-similar ad-

verse pressure gradient (APG) turbulent boundary layer
(TBL) are presented. The intended flow is generated us-
ing the direct numerical simulation (DNS) TBL code of
Simenset al. (2009) andBorrell et al. (2013), with a mod-
ified farfield boundary condition (BC). The conditions for
self-similarity and appropriate scaling are derived, with
mean and Reynolds stress profiles presented using this scal-
ing. The APG and ZPG DNS are also compared under the
classical viscous scaling.

INTRODUCTION
The performance of many engineering systems relies

on fluid flows remaining attached to aerodynamic surfaces,
with flow separation potentially resulting in catastrophic
consequences or at best energy efficiency degradation. The
study of fluid flow separation is, therefore, of utmost im-
portance. Real world examples include the flow over aero-
foil geometries such as aircraft wings, wind turbine blades,
and turbo-machinery. These configurations are difficult to
systematically study as the pressure gradient is constantly
changing in the streamwise direction, as in the large eddy
simulation ofKitsios et al. (2011).

Here we study the canonical self-similar APG TBL.
A self-similar TBL is defined as each of the terms in
the Navier-Stokes equations having the same proportional-
ity with the streamwise position (Castillo & Wang, 2004).
Here we undertake simulations of flow over a flat sur-
face using the TBL DNS code ofSimenset al. (2009) and

Borrell et al. (2013), with a modified farfield APG bound-
ary condition (BC). This effectively decouples the effect of
upstream flow history and surface curvature from the in-
fluence of the local pressure gradient. Self-similarity is
demonstrated in the present APG TBL over a momentum
thickness based Reynolds number range ofReδ2

≈ 3000 to
5000. Previous DNS of TBL APG include the non-self-
similar separated flow ofGungoret al. (2012), and self-
similar APG cases at relatively low Reynolds numbers in
Lee & Sung(2008).

An overview of the original ZPG TBL DNS code is
first presented. Following this the modifications to the BC
required to generate the self-similar APG TBL are detailed.
The conditions for self-similarity and appropriate scaling
are derived from first principles, and are evaluated for both
the APG and ZPG cases. Profiles of the mean velocity
deficit and Reynolds stresses from the DNS of the APG
are then compared to those of the ZPG DNS on the basis
of viscous scaling. The APG DNS profiles are also scaled
consistent with the results from self-similarity analysis.

DIRECT NUMERICAL SIMULATION
The TBL DNS code adopted within solves the Navier-

Stokes equations in a three-dimensional rectangular vol-
ume, with constant density (ρ) and kinematic viscosity
(ν). The three flow directions are the streamwise (x),
wall-normal (y) and spanwise (z), with respective instan-
taneous velocity components in these directions ofU , V
andW. Throughout the paper the time averaged velocity
components are represented by(〈U〉,〈V〉,〈W〉) ≡ (u,v,w),
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Figure 1. Farfield wall normal velocity BC in the APG (red line) and ZPG (green line) DNS.

with associated fluctuating components of(u,v,w), where
the brackets〈·〉 denote the time averaging operation.
A fractional-step method is used to solve the govern-
ing equations for the velocity and pressure (P) fields
(Harlow & Welch, 1965; Perot, 1993). Fourier decomposi-
tion is used in the periodic spanwise direction, with compact
finite difference in the aperiodic wall-normal and stream-
wise directions (Lele, 1992). The equations are stepped for-
ward in time using a modified three sub-step Runge-Kutta
scheme (Simenset al., 2009). The code utilises MPI paral-
lelisation to decompose the domain inx, and openMP par-
allelisation to decompose iny. For further details on the
message passing refer to (Borrell et al., 2013).

The boundary conditions of the ZPG TBL DNS code
are as follows. The bottom surface is a flat plate with a no-
slip (zero velocity) BC. The spanwise boundaries are pe-
riodic. Due to the TBL growing in height as it develops
in the streamwise direction, a downstream streamwise nor-
mal recycling plane is copied, and mapped to the inlet BC
(Silleroet al., 2013). At the farfield boundary the spanwise
vorticity is zero, and the wall normal velocity is

VZPG(x) = UZPG ∂xδ1(x) , (1)

whereUZPG is the constant freestream streamwise velocity,
δ1 is the displacement thickness (Sillero, 2014). Through-
out the document∂x ≡ ∂/∂x and also∂y ≡ ∂/∂y.

To generate the self-similar APG TBL flow, the
farfield wall-normal velocity BC must be modified. From
Mellor & Gibson (1966) the freestream streamwise veloc-
ity UAPG(x) ∝ xm, wherem=−0.23 for the incipient sepa-
ration APG TBL with the wall shear stress (τw) approaches
zero. The wall normal suction velocityVAPG(x) is deduced
from UAPG(x) via the boundary layer streamfunction solu-
tion in the farfield region to be

VAPG(x) =− [y∞ −δ1] ∂xUAPG+UAPG ∂xδ1 , (2)

wherey∞ is the wall normal position of the farfield bound-
ary (Mellor & Gibson, 1966). This can also be deduced
from the similarity analysis of continuity equation in the
following section.

The structure of the complete farfield wall normal BC,
V∞(x), is as follows. In the APG TBL DNS, to allow the
rescaling necessary for the inlet BC an initial ZPG TBL is
simulated up until the streamwise positionxs = 100δ (x0)
(located after the recycling plane) by applyingVZPG(x) as
defined in (1). Note δ (x0) is the boundary layer thick-
ness (point of maximum velocity,Ue, along the profile)

at the inlet of positionx = x0. Downstream of the posi-
tion xf = 140δ (x0) the wall normal velocityVAPG(x) is ap-
plied at the farfield boundary as given by (2), which im-
parts the desired deceleration and hence expansion of the
boundary layer. Fromxs to xf the velocityVAPG(x) is grad-
ually introduced using a smoothing function. Finally the
farfield velocity is transitioned from suction (V∞(x) > 0) at
xb = 760δ (x0) to blowing (V∞(x) < 0) at the outlet to re-
duce the number of instantaneous reversed flow events, such
that numerical stability of the outflow boundary condition
is maintained. The ZPG and APG farfield boundary condi-
tions,U(x)/U∞(x0), is illustrated in Fig.1, whereU∞(x0) is
the freestream streamwise velocity at the inlet.

The streamwise, wall normal and spanwise domain ex-
tents are(Lx,Ly,Lz)/δ (x0) = (801,38,134) for the ZPG
TBL DNS and(Lx,Ly,Lz)/δ (x0) = (801,70,134) for the
APG case. The associated number of grid points are
Nx ×Ny ×Nz = 8193× 315× 1362 for the ZPG andNx ×
Ny×Nz = 8193×500×1362 for the APG. The APG sim-
ulation has a larger wall normal domain (Ly) and more
points in this direction (Ny) due to the APG TBL expand-
ing more quickly in the streamwise direction than the ZPG
TBL. Both simulations have the same grid spacings of
(∆x,∆ywall ,∆y∞,∆z)/δ (x0) = (0.098,0.0026,0.17,0.098),
where∆x and ∆z are the constant spacing in the stream-
wise and spanwise directions, with∆ywall and∆y∞ the wall
normal grid spacing at the wall and at the farfield boundary
receptively. In both simulations the Courant number was
set to unity. The length scales are non-dimensionalised by
δ (x0) as viscous scaling is inappropriate for APG flows.

The ZPG and APG boundary layer properties are now
characterised within the zone of interest fromx= 300δ (x0)
to x = 630δ (x0). In all of the following figures the green
and red lines represent the ZPG and APG cases respec-
tively. The momentum thickness (δ2) based Reynolds num-
ber (Reδ2

) illustrated in Fig.2(a), increases in the APG
TBL more rapidly than the ZPG TBL. This is because the
APG TBL expands more rapidly than the ZPG TBL in
the streamwise direction as illustrated byδ , δ1 and δ2 in
Fig. 2(b), Fig. 2(c) and Fig.2(d) respectively. The shape
factor H = δ1/δ2 is illustrated in Fig.2(e) and is constant
over this range. The APG TBL is additionally decelerated
via the BC as illustrated in the reduction of the outer refer-
ence velocity (Ue) in Fig. 2(f). The expansion of the bound-
ary layer coincides with a reduction of the wall shear stress
(τw). In Fig. 2(g), τw of the APG case is less than that of
ZPG TBL as the former is decelerated more than the latter,
which is also evident in the skin friction coefficient (Cf )
illustrated in Fig.2(h). The parameterβ = δ1(∂xPe)/τw

quantifies the strength of the pressure gradient and is illus-
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Figure 2. Boundary layer properties of the APG and ZPG
DNS: (a) momentum thickness Reynolds number,Reδ2

=

Ueδ2/ν; (b) boundary layer thickness,δ ; (c) displacement
thickness,δ1; (d) momentum thickness,δ2; (e) shape factor,
H = δ1/δ2; (f) outer reference velocity,Ue; (g) wall shear
stress,τw; and (h) skin friction coefficient,Cf = 2τw/U2

e ;
and (i) pressure gradient parameter,β = δ1(∂xPe)/τw, with
the horizontal axis applicable to all figures, andβ = 0 for
the ZPG TBL.

trated in Fig.2(i). For the incipient separation caseτw (and
Cf ) approaches zero, and henceβ → ∞. The present APG
TBL DNS has not yet attained the desired state, however,
an additional DNS is currently being run with a stronger
pressure gradient, producing a lowerCf and hence largerβ .

SIMILARITY CONDITIONS
To achieve a self-similar boundary layer there are var-

ious quantities that must be independent ofx. These quan-
tities are derived from first principles following the anal-
ysis of Castillo & Wang(2004), which are then evaluated
for the present data. We start with the Reynolds averaged
Navier-Stokes continuity and streamwise momentum equa-
tions specific for boundary layer layers given by

∂xū+∂yv̄ = 0 , and (3)

ū∂xū+ v̄∂yū = −(∂xPe)/ρ +∂x〈v2〉
− ∂x〈u2〉−∂y〈uv〉+ν∂y∂yū , (4)

respectively, whereν is the kinetic viscosity, and the farfield
pressure gradient∂xPe = −ρUe∂xUe. A derivation of these
equations from the complete instantaneous Navier-Stokes
can be found inPope(2008). The following general scaling
for the mean field and Reynolds stresses is adopted with

ū(x,y) = Ue(x)+U0(x) f (ζ ) , (5)

〈uv〉(x,y) = −Ruv(x) ruv(ζ ) , (6)

〈u2〉(x,y) = Ruu(x) ruu(ζ ) , (7)

〈v2〉(x,y) = Rvv(x) rvv(ζ ) , and (8)

ζ = y/L0(x) , where (9)

L0(x) = δ1(x)Ue(x)/U0(x) . (10)

RecallUe is the maximum velocity along the profile,U0
is the velocity scale used to nondimensionalise the velocity
deficit, andδ1 is the displacement thickness defined by

δ1(x) =
∫ δ

0
(1−U(x,y)/Ue(x)) dy , (11)

with δ the wall normal position ofUe. This definition forζ
ensures that

∫ δ/L0

0
f (ζ ) dζ =−1 . (12)

Likewise the integrals fromζ = 0 to ζ = δ/L0 of the simi-
larity functions for the Reynolds stressesruv(ζ ), ruu(ζ ) and
rvv(ζ ) are all defined to be equal to 1. This means the func-
tionsRuv(x), Ruu(x), andRvv(x) can be determined at each
x position from the wall normal integrals of−〈uv〉(x,y),
〈u2〉(x,y) and〈v2〉(x,y) respectively.

By substituting (5) to (8) into the continuity equation
(3), applying the chain rule and integration by parts, we get
the following expression for the mean wall normal velocity

v̄=−ζL0∂xUe − F∂x (U0L0)+ f ζU0∂xL0 , with (13)

F(ζ ) =
∫ ζ

0
f (ζ̃ ) dζ̃ . (14)

Making the same substitutions into the momentum equation
(4), along with (13) for v̄, and grouping like terms produces

[U0∂xUe+Ue∂xU0] f +[U0∂xU0] f 2

− [U0Ue/L1+U0∂xUe]ζ f ′−
[
U2

0/L1+U0∂xU0

]
F f ′

= − [Rvv/L1] r
′
vvζ +[Ruu/L1] r

′
uuζ +[Ruv/L0] r

′
uv

+ [∂xRvv] rvv− [∂xRuu] ruu+
[
νU0/L2

0

]
f ′′ , (15)
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whereL1 = L−1
0 ∂xL0, and the superscript′ denotes∂/∂ζ .

The terms in the square brackets in (15) are a function of
only x, and the remaining terms are functions of onlyζ .

For a boundary layer to be self-similar each of the
terms in the square brackets of (15) must all have the same
proportionality withx. By inspecting the first three terms in
(15) we find thatU0∂xUe ∝ Ue∂xU0 ∝ U0∂xU0, which can
call only be satisfied if

U0 = KUe , (16)

whereK is an arbitrary constant. This simplifies the defi-
nition of the length scale in (10) to L0 = δ1Ue/U0 = δ1/K.
Substituting in these relationships forUe andL0 into (15)
and dividing through by−U2

0 (∂xδ1)/δ1 produces

2
K

Λ f + Λ f 2− 1
K
[Λ−1]ζ f ′− [Λ−1]F f ′

= Cvvr
′
vvζ −Cuur ′uuζ −KCuvr

′
uv (17)

− Dvvrvv+Duuruu−K2Cν f ′′ , where

Cuu = Ruu/U
2
0 , (18)

Cvv = Rvv/U
2
0 , (19)

Cuv = Ruv/
(
U2

0 ∂xδ1

)
, (20)

Duu = ∂xRuuδ1/
(

U2
0 ∂xδ1

)
, (21)

Dvv = ∂xRvvδ1/
(
U2

0 ∂xδ1

)
, (22)

Cν = −ν/(U0δ1∂xδ1) , and (23)

Λ = −δ1U0∂xU0/
(

U2
0 ∂xδ1

)
=−δ1Ue∂xUe/

(
U2

e ∂xδ1

)

= δ1∂xPe/
(

ρU2
e ∂xδ1

)
=
(
Up/Ue

)2
/(∂xδ1) , (24)

with constants independent ofx for self-similar TBL. The
pressure velocityUp =

√
(∂xPe)δ1/ρ (Mellor & Gibson,

1966), andΛ is as defined inCastillo & Wang(2004).
We can also determine a relationship between the

freestream velocity and the displacement thickness by re-
arranging the definition ofΛ in (24) into the form

−Λ(∂xδ1)/δ1 = (∂xUe)/Ue . (25)

Integrating both sides with respect tox produces

Ue = Aδ−Λ
1 , (26)

whereA is a constant of integration. In Fig.3 we have plot-
ted the natural log ofUe against the natural log ofδ1, the
gradient of which should be−Λ. For the case of a linearly
increasing displacement thickness−Λ = m.

It can also be shown that ifΛ, Cuu andCvv are indepen-
dent ofx, thenDuu andDvv must also be independent ofx.
There are, therefore, only five unique coefficients that need
to be independent ofx to ensure self-similarity, which areΛ,
Cuv, Cuu, Cvv andCν . These coefficients are evaluated for
the APG and ZPG cases in Fig.4, with the APG coefficients
relatively independent ofx, with expection of perhapsCν .

Scaling of the statistical profiles
Mean streamwise velocity deficit profiles (Ue−u) are

now presented at the streamwise locations indicated by the
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Figure 4. Coefficients to assess the self-similarity of the
APG and ZPG TBL DNS on the basis of: (a)Λ, with arrows
indicating the positions of the APG TBL velocity profiles
illustrated in Fig.5 and Fig.6; (b)Cuv; (c)Cuu; (d) Cvv; and
(e)Cν , with the horizontal axis applicable to all figures.

arrows in Fig.4(a). In Fig.5(a) the deficit profiles are non-
dimensionalised by the friction velocity (uτ =

√
τw/ρ) and

plotted againsty/δ . The dots in this figure represent re-
sults from the previous ZPG DNS ofJiménezet al. (2010),
which agree with the present ZPG simulation. When scaled
by uτ , the non-dimensional velocity profiles near the wall
increase in the downstream direction - indicated by the ar-
row - asuτ decreases. However, when scaled byUe andδ1
(in line with the theory in the previous section) the profiles
do collapse, as illustrated in Fig.5(b). The solid black line
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Figure 5. Mean velocity deficit profiles nondimensionalisedby: (a) friction velocity,uτ , and boundary layer thickness,δ ;
and (b) reference outer velocity,Ue, and displacement thickness,δ1. ZPG TBL DNS ofJiménezet al. (2010) - blue dots; ZPG
TBL DNS current simulation - green line; APG TBL DNS from current simulation at different streamwise locations - red lines;
streamwise averaged scaled profiles - black lines. Positions of the APG TBL profiles are illustrated in Fig.4(a), with arrows in
left column indicating the direction of increasingx position.

represents the streamwise average in the scaled coordinates.
As undertaken for the velocity deficit profiles, the

Reynolds stresses are now presented scaled on the basis of
initially the wall shear stress and then on the basis of the
outer flow (or effectively the pressure gradient). Under the
former scaling the Reynolds stress profiles are nondimen-
sionalised using a velocity scale ofuτ and length scale of
ν/uτ . Under the latter scaling the pertinent velocity and
length scales are againUe andδ1. Profiles of〈uu〉 are plot-
ted in viscous scaling in Fig.6(a), which again increases as
uτ decreases in the downstream direction. A second outer
peak is also evident. Similar observations are also made
concerning〈vv〉, 〈ww〉, and〈uv〉, plotted under viscous scal-
ing in Fig. 6(c), Fig. 6(e), and Fig.6(g) respectively. All
of these Reynolds stresses increase in magnitude asuτ de-
creases in the downstream direction, with a prominent sec-
ond outer peak. The profiles collapse for all of the stream-
wise stations when plotted in outer scaling as illustrated for
〈uu〉, 〈vv〉, 〈ww〉 and〈uv〉 in Fig. 6(b), Fig.6(d), Fig.6(f),
and Fig.6(h) respectively.

CONCLUDING REMARKS
An adverse pressure gradient turbulent boundary layer

was generated via direct numerical simulation with a mod-
ified farfield boundary condition. The coefficients quanti-
fying the extent of self-similarity are relatively constant for
the adverse pressure gradient case over a momentum thick-
ness based Reynolds number range ofReδ2

≈ 3000 to 5000.
Within this domain, mean velocity deficit and Reynolds
stress profiles collapse under outer scaling. The Reynolds
stresses also exhibit a second outer peak.
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Figure 6. Reynolds stress profiles: (a)〈uu〉 in viscous scaling nondimensionalised by friction velocity, uτ , and viscous length
scale,ν/uτ ; (b) 〈uu〉 in outer scaling nondimensionalised by reference outer velocity, Ue, and displacement thickness,δ1; (c)
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applicable to all plots in same column. ZPG TBL DNS ofJiménezet al. (2010) - blue dots; ZPG TBL DNS current simulation
- green line; APG TBL DNS from current simulation at different streamwise locations - red lines; streamwise averaged scaled
profiles - black lines. Positions of the APG TBL profiles are illustrated in Fig.4(a), with arrows in left column indicating the
direction of increasingx position.
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