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ABSTRACT

The statistical scaling properties of a self-similar ad-
verse pressure gradient (APG) turbulent boundary layer
(TBL) are presented. The intended flow is generated us-
ing the direct numerical simulation (DNS) TBL code of
Simenset al. (2009 andBorrell et al. (2013, with a mod-
ified farfield boundary condition (BC). The conditions for
self-similarity and appropriate scaling are derived, with
mean and Reynolds stress profiles presented using this scal-
ing. The APG and ZPG DNS are also compared under the
classical viscous scaling.

INTRODUCTION

The performance of many engineering systems relies
on fluid flows remaining attached to aerodynamic surfaces,
with flow separation potentially resulting in catastrophic
consequences or at best energy efficiency degradation. The
study of fluid flow separation is, therefore, of utmost im-
portance. Real world examples include the flow over aero-
foil geometries such as aircraft wings, wind turbine blades
and turbo-machinery. These configurations are difficult to
systematically study as the pressure gradient is congtant!
changing in the streamwise direction, as in the large eddy
simulation ofKitsios et al. (2011).

Here we study the canonical self-similar APG TBL.
A self-similar TBL is defined as each of the terms in
the Navier-Stokes equations having the same proportional-
ity with the streamwise positiorCastillo & Wang 2004).
Here we undertake simulations of flow over a flat sur-
face using the TBL DNS code @imenset al. (2009 and

Borrell et al. (2013, with a modified farfield APG bound-
ary condition (BC). This effectively decouples the effett o
upstream flow history and surface curvature from the in-
fluence of the local pressure gradient. Self-similarity is
demonstrated in the present APG TBL over a momentum
thickness based Reynolds number rang&eyf ~ 3000 to
5000. Previous DNS of TBL APG include the non-self-
similar separated flow oGungoret al. (2012, and self-
similar APG cases at relatively low Reynolds numbers in
Lee & Sung(2008.

An overview of the original ZPG TBL DNS code is
first presented. Following this the modifications to the BC
required to generate the self-similar APG TBL are detailed.
The conditions for self-similarity and appropriate scglin
are derived from first principles, and are evaluated for both
the APG and ZPG cases. Profiles of the mean velocity
deficit and Reynolds stresses from the DNS of the APG
are then compared to those of the ZPG DNS on the basis
of viscous scaling. The APG DNS profiles are also scaled
consistent with the results from self-similarity analysis

DIRECT NUMERICAL SIMULATION

The TBL DNS code adopted within solves the Navier-
Stokes equations in a three-dimensional rectangular vol-
ume, with constant densityp] and kinematic viscosity
(v). The three flow directions are the streamwisg, (
wall-normal ) and spanwisez], with respective instan-
taneous velocity components in these directiondJoiV
andW. Throughout the paper the time averaged velocity
components are represented(y ), (V), (W)) = (4,v,w),
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Figure 1. Farfield wall normal velocity BC in the APG (red rend ZPG (green line) DNS.

with associated fluctuating components(afv,w), where
the brackets(-) denote the time averaging operation.
A fractional-step method is used to solve the govern-
ing equations for the velocity and pressure) (fields
(Harlow & Welch 1965 Perot 1993. Fourier decomposi-
tion is used in the periodic spanwise direction, with contpac
finite difference in the aperiodic wall-normal and stream-
wise directionsl(ele, 1992. The equations are stepped for-
ward in time using a modified three sub-step Runge-Kutta
scheme $imenset al, 2009. The code utilises MPI paral-
lelisation to decompose the domainxnand openMP par-
allelisation to decompose i For further details on the
message passing refer 8drrell et al,, 2013).

The boundary conditions of the ZPG TBL DNS code
are as follows. The bottom surface is a flat plate with a no-
slip (zero velocity) BC. The spanwise boundaries are pe-
riodic. Due to the TBL growing in height as it develops
in the streamwise direction, a downstream streamwise nor-
mal recycling plane is copied, and mapped to the inlet BC
(Silleroet al., 2013. At the farfield boundary the spanwise
vorticity is zero, and the wall normal velocity is

Vzpg(X) = Uzpg 0xd1(X) , 1)

whereUzpg is the constant freestream streamwise velocity,
9 is the displacement thicknesSillero, 2014). Through-
out the documendy = d/dx and alsady = d/0dy.

To generate the self-similar APG TBL flow, the
farfield wall-normal velocity BC must be modified. From
Mellor & Gibson (1966 the freestream streamwise veloc-
ity Uapa(x) O x™, wherem= —0.23 for the incipient sepa-
ration APG TBL with the wall shear stresgy) approaches
zero. The wall normal suction veloci¥apc(X) is deduced
from Uppg(X) via the boundary layer streamfunction solu-
tion in the farfield region to be

VapG(X) = — Yoo — 1] dUapc+Uapc k01,  (2)
wherey., is the wall normal position of the farfield bound-
ary (Mellor & Gibson, 1966. This can also be deduced
from the similarity analysis of continuity equation in the
following section.

The structure of the complete farfield wall normal BC,
Vw(X), is as follows. In the APG TBL DNS, to allow the
rescaling necessary for the inlet BC an initial ZPG TBL is
simulated up until the streamwise positign= 1005(xp)
(located after the recycling plane) by applyi¥gpc(x) as
defined in (). Note d(Xp) is the boundary layer thick-
ness (point of maximum velocityJe, along the profile)

at the inlet of positiorx = xg. Downstream of the posi-
tion x; = 1405(Xp) the wall normal velocitWapg(X) is ap-

plied at the farfield boundary as given bg),(which im-
parts the desired deceleration and hence expansion of the
boundary layer. Froms to x¢ the velocityVapg(X) is grad-

ually introduced using a smoothing function. Finally the
farfield velocity is transitioned from suctiol(x) > 0) at

Xp = 7600(Xp) to blowing {/w(X) < 0) at the outlet to re-
duce the number of instantaneous reversed flow events, such
that numerical stability of the outflow boundary condition

is maintained. The ZPG and APG farfield boundary condi-
tions,U (X) /Ue (X0), is illustrated in Figl, whereUe (Xp) is

the freestream streamwise velocity at the inlet.

The streamwise, wall normal and spanwise domain ex-
tents are(Lx,Ly,Lz)/d(Xg) = (801,38,134) for the ZPG
TBL DNS and(Ly,Ly,Lz)/3(x0) = (801,70,134) for the
APG case. The associated number of grid points are
Nx x Ny x Nz = 8193x 315x 1362 for the ZPG andiy x
Ny x Nz = 8193x 500x 1362 for the APG. The APG sim-
ulation has a larger wall normal domaihy§ and more
points in this directioniy) due to the APG TBL expand-
ing more quickly in the streamwise direction than the ZPG
TBL. Both simulations have the same grid spacings of
(DX, Ayyall, Ao, AZ) / 3(Xp) = (0.098 0.00260.17,0.098),
where Ax and Az are the constant spacing in the stream-
wise and spanwise directions, willyy,a andAy. the wall
normal grid spacing at the wall and at the farfield boundary
receptively. In both simulations the Courant number was
set to unity. The length scales are non-dimensionalised by
J(Xp) as viscous scaling is inappropriate for APG flows.

The ZPG and APG boundary layer properties are now
characterised within the zone of interest frar 3005(xp)
to x = 6305(xp). In all of the following figures the green
and red lines represent the ZPG and APG cases respec-
tively. The momentum thickness4) based Reynolds num-
ber Re,) illustrated in Fig.2(a), increases in the APG
TBL more rapidly than the ZPG TBL. This is because the
APG TBL expands more rapidly than the ZPG TBL in
the streamwise direction as illustrated &y d; and &, in
Fig. 2(b), Fig. 2(c) and Fig.2(d) respectively. The shape
factorH = 81/, is illustrated in Fig.2(e) and is constant
over this range. The APG TBL is additionally decelerated
via the BC as illustrated in the reduction of the outer refer-
ence velocity (e) in Fig. 2(f). The expansion of the bound-
ary layer coincides with a reduction of the wall shear stress
(tw)- In Fig. 2(g), Tw of the APG case is less than that of
ZPG TBL as the former is decelerated more than the latter,
which is also evident in the skin friction coefficier®()
illustrated in Fig.2(h). The parametef = 61(xPe)/Tw
quantifies the strength of the pressure gradient and is illus
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Figure 2. Boundary layer properties of the APG and ZPG
DNS: (a) momentum thickness Reynolds numifegs, =
Ued,/Vv; (b) boundary layer thickness, (c) displacement
thicknessgy; (d) momentum thicknessy; (e) shape factor,
H = &1/d; (f) outer reference velocitye; (g) wall shear
stress,Tw; and (h) skin friction coefficientCs = 2TW/U§;
and (i) pressure gradient paramef@r= d1(0xPe) / Tw, With
the horizontal axis applicable to all figures, afid= 0 for
the ZPG TBL.
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trated in Fig.2(i). For the incipient separation casg (and

Cs) approaches zero, and henge— . The present APG
TBL DNS has not yet attained the desired state, however,
an additional DNS is currently being run with a stronger
pressure gradient, producing a lov@rand hence larges.

SIMILARITY CONDITIONS

To achieve a self-similar boundary layer there are var-
ious quantities that must be independenk.ofhese quan-
tities are derived from first principles following the anal-
ysis of Castillo & Wang (2004, which are then evaluated
for the present data. We start with the Reynolds averaged
Navier-Stokes continuity and streamwise momentum equa-
tions specific for boundary layer layers given by

dku+aywv=0,and ©)
U0+ VoY = —(0Pe) /p + O (VP)
— (WP —dy(uv) +vaydu, (4

respectively, where is the kinetic viscosity, and the farfield
pressure gradierdP. = —pUediUe. A derivation of these
equations from the complete instantaneous Navier-Stokes
can be found iPope(2008. The following general scaling

for the mean field and Reynolds stresses is adopted with

u(x,y) = Ue(x) +Uo(x) F({) , (5)
(U (x,y) = —Ru(X) ru({) , (6)
() (xy) = Ruu(¥) ruu({) , @)
(V) (%y) = Rw(x) rw({) , and (8)

{ = y/Lo(x) , where 9)

Lo(X) = d1(X)Ue(x)/Uo(X) - (10)

RecallUe is the maximum velocity along the profilélg
is the velocity scale used to nondimensionalise the velocit
deficit, andd; is the displacement thickness defined by

-5
8109 = [ (1-U()/Ueb0) dy, (D)

with é the wall normal position ofle. This definition for
ensures that
‘5/L0
k

Likewise the integrals frond = 0to { = d/Lg of the simi-
larity functions for the Reynolds stressgs({), ryu({) and
rw({) are all defined to be equal to 1. This means the func-
tions Ryv(X), Ruu(x), andR(x) can be determined at each
x position from the wall normal integrals of (uv)(x,y),
(U?)(x,y) and (v?)(x,y) respectively.

By substituting §) to (8) into the continuity equation
(3), applying the chain rule and integration by parts, we get
the following expression for the mean wall normal velocity

f(g)dl=-1. (12)

v=—{LodUe — Fdx(UpLo) + f{UpdxLo , with (13)

(N o~
F@) = [ 1) al. (14)

Making the same substitutions into the momentum equation
(4), along with (L3) for v, and grouping like terms produces
[UgdxUe +UedUp] f + [UgdxUo] f2
— [UgUe/Ly + U Ue] 7' — {ug /L1+U00XU0] Ffl
= — [Rwv/La]rind + [Ruu/La] ruud + [Ruv/Lo] riy

+ [OxRw] r'w — [0xRuu] ruu + [VUO/L%] 7, (15)



wherelL; = LalaxLo, and the superscriptdenotesd /9.
The terms in the square brackets Ib) are a function of
only x, and the remaining terms are functions of ogly

For a boundary layer to be self-similar each of the
terms in the square brackets d5f must all have the same
proportionality withx. By inspecting the first three terms in
(15) we find thatUpdxUe 0 UedxUg O UgdiUp, which can
call only be satisfied if

Up = KUe, (16)
whereK is an arbitrary constant. This simplifies the defi-
nition of the length scale inlQ) to Lo = 61Ue/Ug = 01 /K.
Substituting in these relationships foe andLg into (15)
and dividing through byLug (0xd1)/ 01 produces

2 2 1 l I
KAf+Af K[/\ Ut —[N-1]Ff

= C\/Vr\//\/Z 7CUUr(JuZ - KCUVr:Jv (17)

— Dwrw+ Dudruu— K?Cy £, where
Cuu = Ruu/U§ (18)
Cw = va/Ug , (19)
Cuv = Ru/ (U338 | (20)
Duu = axRuual/ (Ugaxél) ) (21)
Dw = avav(sl/ <U§dx51> ) (22)
Cv = —V/(Upd1d,8y) , and (23)

A = ~31U00xUo/ (UFd1 ) = —a1UedUe/ (U231
= 510kPs/ (pugaxal) = (Up/Ue)? /(oxd1),  (24)

with constants independent grffor self-similar TBL. The
pressure velocitydp = /(0xPe)d1/p (Mellor & Gibson,
1966), andA is as defined ilCastillo & Wang(2004).

We can also determine a relationship between the
freestream velocity and the displacement thickness by re-
arranging the definition oA\ in (24) into the form

—N\(0xd1)/01 = (xUe)/Ue . (25)
Integrating both sides with respectx@roduces
Ue = A5 ", (26)

whereA is a constant of integration. In Fi§.we have plot-
ted the natural log of)e against the natural log a¥, the
gradient of which should beA. For the case of a linearly
increasing displacement thicknes# = m.

It can also be shown thatA, Cy, andC,y are indepen-
dent ofx, thenD, andDyy, must also be independent xf
There are, therefore, only five unique coefficients that need
to be independent ofto ensure self-similarity, which arg,
Cuv: Cuus Cv andC,,. These coefficients are evaluated for
the APG and ZPG cases in Fg.with the APG coefficients
relatively independent of, with expection of perhaps, .

Scaling of the statistical profiles
Mean streamwise velocity deficit profiled{— T) are
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Figure 3. Natural log of outer reference velocity, as
a function of the natural log of displacement thickness,
Dashed black line has a reference gradient0£23.
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Figure 4. Coefficients to assess the self-similarity of the
APG and ZPG TBL DNS on the basis of: (&) with arrows
indicating the positions of the APG TBL velocity profiles
illustrated in Fig55 and Fig.6; (b) Cyy; (c) Cyy; (d) Cyy; and
(e)Cy, with the horizontal axis applicable to all figures.

arrows in Fig4(a). In Fig.5(a) the deficit profiles are non-
dimensionalised by the friction velocity{ = \/tw/p) and
plotted againsy/d. The dots in this figure represent re-
sults from the previous ZPG DNS diménezt al. (2010,
which agree with the present ZPG simulation. When scaled
by ur, the non-dimensional velocity profiles near the wall
increase in the downstream direction - indicated by the ar-
row - asu; decreases. However, when scaledJayand é1

(in line with the theory in the previous section) the profiles

now presented at the streamwise locations indicated by the do collapse, as illustrated in Fig(b). The solid black line
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Figure 5. Mean velocity deficit profiles nondimensionalidsd (a) friction velocity,ur, and boundary layer thicknes§;
and (b) reference outer velocitye, and displacement thickness,. ZPG TBL DNS ofJiménezt al. (2010 - blue dots; ZPG
TBL DNS current simulation - green line; APG TBL DNS from cemt simulation at different streamwise locations - reddjne
streamwise averaged scaled profiles - black lines. Positbthe APG TBL profiles are illustrated in Fig(a), with arrows in

left column indicating the direction of increasimgosition.

represents the streamwise average in the scaled cooslinate
As undertaken for the velocity deficit profiles, the
Reynolds stresses are now presented scaled on the basis o
initially the wall shear stress and then on the basis of the
outer flow (or effectively the pressure gradient). Under the
former scaling the Reynolds stress profiles are nondimen-
sionalised using a velocity scale of and length scale of
v/ur. Under the latter scaling the pertinent velocity and
length scales are agdifi andd;. Profiles of(uu) are plot-
ted in viscous scaling in Fid(a), which again increases as
ur decreases in the downstream direction. A second outer
peak is also evident. Similar observations are also made
concerning(v), (ww), and{uv), plotted under viscous scal-
ing in Fig. 6(c), Fig. 6(e), and Fig.6(g) respectively. All
of these Reynolds stresses increase in magnitude de-
creases in the downstream direction, with a prominent sec-
ond outer peak. The profiles collapse for all of the stream-
wise stations when plotted in outer scaling as illustrated f
(uuy, (v, (ww) and(uv) in Fig. 6(b), Fig. 6(d), Fig. 6(f),
and Fig.6(h) respectively.

CONCLUDING REMARKS

An adverse pressure gradient turbulent boundary layer
was generated via direct numerical simulation with a mod-
ified farfield boundary condition. The coefficients quanti-
fying the extent of self-similarity are relatively constdor
the adverse pressure gradient case over a momentum thick-
ness based Reynolds number rangBejf ~ 3000 to 5000.
Within this domain, mean velocity deficit and Reynolds
stress profiles collapse under outer scaling. The Reynolds
stresses also exhibit a second outer peak.
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Figure 6. Reynolds stress profiles: (a)) in viscous scaling nondimensionalised by friction velgai, and viscous length
scale,v/ur; (b) (uu) in outer scaling nondimensionalised by reference outercitg] Ue, and displacement thickness,; (c)
(wv) in viscous scaling; (djvv) in outer scaling; (eww) in viscous scaling; (f\ww) in outer scaling; (gXuv) in viscous
scaling, with horizontal scale applicable to all plots immgacolumn; and (hjuv) in outer scaling, with horizontal scale
applicable to all plots in same column. ZPG TBL DNSJohénezt al. (2010 - blue dots; ZPG TBL DNS current simulation
- green line; APG TBL DNS from current simulation at diffetestreamwise locations - red lines; streamwise averagdddsca
profiles - black lines. Positions of the APG TBL profiles atastrated in Fig4(a), with arrows in left column indicating the
direction of increasing position.



