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ABSTRACT
Despite its importance in many applications, the na-

ture of wall-bounded turbulent flow is not well-understood.
The dynamics of near-wall turbulence has been well stud-
ied, with direct numerical simulation (DNS) making an im-
portant contribution. It has been difficult to study the in-
teraction of near-wall and outer-layer turbulence via DNS
because the Reynolds numbers available via DNS have not
been sufficiently high to exhibit significant scale separation.
In the work presented here, we correct that short-coming.

We have performed direct numerical simulation(DNS)
of turbulent channel flow using a Fourier-Galerkin method
in the streamwise(x) and spanwise (z) directions and a B-
Splines collocation method in the wall-normal (y) direction.
The highest Reynolds number based on shear velocity (uτ =√

τw/ρ), Reτ is approximately 5200.
To study the scale dependence of the dynamics of the

Reynolds stress components, we applied a spectral analy-
sis to the terms in the Reynolds stress transport equation
(RSTE). Result shows that the large (or very large) scale
motion has an important role in turbulent transport terms.
Also, it has been observed that a non-trivial portion of tur-
bulent kinetic energy (TKE) is transported to the near-wall
region and dissipated by large scale motion.

Introduction
Recently, much research has been directed at under-

standing wall-bounded turbulent flows at high Reynolds
number (Re). Recent advances of experimental techniques
(Nagib et al., 2004; Kunkel & Marusic, 2006; Westerweel
et al., 2013; Bailey et al., 2014) and computing power (Lee
et al., 2013; Borrell et al., 2013; El Khoury et al., 2013)
provide information not previously available. One of the
most important feature of high Re wall-bounded turbulence
is the separation of scales between the near wall and outer
layer turbulence. Two distinct peaks of the streamwise ve-
locity energy spectral density are observed experimentally:
a small-scale peak in the near-wall region and a large-scale

peak in the outer region (Hutchins & Marusic, 2007; Monty
et al., 2009; Marusic et al., 2010a,b). Two such spectral
peaks were confirmed by direct numerical simulation(DNS)
by Lee & Moser (2015). Lee & Moser (2015) have also
found that there is peak distinction in the spectral density of
Reynolds stress, −u′v′, but this has not yet been observed
in experiments. Since the DNS can provides such richer
data with high fidelity, it is possible to compute higher order
terms in three dimensions. In this work, we have focused on
the Reynolds stress transport equation (RSTE) which give
us information about production, transport and dissipation
of the Reynolds stress tenor. However, RSTE is an aver-
aged equation, so it is difficult to study detailed roles of
turbulent motions. Hence, we have performed a spectral
analysis on each terms in RSTE to observe how the mo-
tions in different length scales contribute the transport of
Reynolds stresses. To our knowledge, such a spectral anal-
ysis of terms in RSTE has not previously been performed.
In this work we have focused on the turbulent kinetic energy
(TKE) equation and the interaction between components of
the velocity fluctuations.

This paper is organized as follow. First, the simu-
lation methods and the definition of terms in RSTE are
described. Then, the following are discussed: Re depen-
dencies of terms in RSTE, spectral analysis of production,
transport and dissipation, enhanced analysis of turbulent
transport and interaction of velocity fluctuations in differ-
ent direction by pressure-strain terms.
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Table 1. Summary of simulation parameters. (∆x and ∆z
are in terms of Fourier modes for spectral methods. ∆yw and
∆yc are grid spacing at wall and center line, respectively.
Reτ = uτ δ/ν , Tuτ/δ - Total simulation time without tran-
sition)

Name Reτ Reb ∆x+ ∆z+ ∆y+w ∆y+c Tuτ/δ

R180 182 2,857 4.5 3.1 0.074 3.4 31.9

R550 544 10,000 8.9 5.0 0.019 4.5 13.6

R1000 1000 20,000 10.9 4.6 0.019 6.2 12.5

R2000 2003 43,478 12.3 6.1 0.323 8.9 11.

R5200 5186 125,000 12.7 6.4 0.498 10.3 7.80

Method

In the discussion to follow, the velocity components in
streamwise(x), wall-normal(y), and spanwise(z) directions
are denoted by u, v and w, respectively. Also, the mean ve-
locities and fluctuations are denoted by capital letters and
primes. Furthermore, 〈·〉 denotes the expected value or av-
erage. Thus U = 〈u〉 and u =U +u′.

The incompressible turbulent flow between two infinite
parallel planes is simulated. The lengths of simulation do-
main in x and z directions are truncated to Lx = 8πδ and
Lz = 3πδ with periodic boundary conditions, where δ is
the channel half width. No-slip and no-penetration bound-
ary conditions at the walls are applied in y directions. A
Fourier-Galerkin method is used in the x and z directions,
while a seventh order B-spline collocation method is used
in the y direction. The Navier-Stokes equations are manip-
ulated to time-advance v and ωy, the vorticity in the y di-
rection (Kim et al., 1987). Using this velocity-vorticity for-
mulation is beneficial because continuity is exactly satisfied
and the pressure term is eliminated. Time is discretized by
a low-storage implicit-explicit method suggested by Spalart
et al. (1991). The superscription, “+”, indicates that the
quantity is normalized by viscosity and friction velocity,
uτ =

√
τw/ρ , where τw denotes the mean shear stress at

wall. The simulation parameters are provided in Table 1.
More details about the simulation code, numerical methods,
and simulation process are discussed in Lee et al. (2013,
2014); Lee & Moser (2015).

The equation for the velocity fluctuation is
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Let ũ′i = u′i(x̃), x̃ = x + r = (x + rx,y, z + rz) where r is
the separation vector in x and z direction. By multiplying
the equation for ∂ u′i/∂ t by ũ′j, multiplying the equation for
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∂ 〈u′iũ′j〉
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∂ ũ′j
∂ y

〉
+

∂ 2〈u′ũ′j〉
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P, T , Πs, Πd , D and ε denote production, turbulent-
transport, pressure-strain, pressure-transport, viscous trans-
port and dissipation respectively. Note that the Reynolds
stress transport equation is the special case of eq (1) when
rx = rz = 0. Also, Ti j can be decomposed as following:

Ti j = Ti j,0 +Ti j,1 (2)

where

Ti j,0 = Ti j +
1
2
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In this form, Ti j,0 = 0 when rx = rz = 0. The discrete Fourier
transform is performed on each term of eq (1).

F (rx,y, rz) = ∑
kx,kz

F̂ (kx,y,kz)eikxrx eikzrz

where F is each term in eq (1), F̂ is Fourier-transformed
function of F and kx and kz are wavenumbers in stream-
wise and spanwise directions. The one-dimensional energy
spectral density of F is defined as

Ex,F (kx,y) = ∑
kz

[
F̂ (kx,y,kz)+ F̂ (−kx,y,kz)

]

Ez,F (kz,y) = ∑
kx

[
F̂ (kx,y,kz)+ F̂ (kx,y,−kz)

]

Finally, in the results that follow we have pre-multiplied
spectra and profiles by kx, kz and/or y when plotting on log
scales to represent the contribution to the integral, since, for
example,

∫

Ω
F dy =

∫

Ω∗
yF d(logy)
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Figure 1. Production, transport and dissipation of turbulent kinetic energy: (a) Production (b) Transport (Turbu-
lent+Pressure+Viscous) (c) Dissipation (d) Turbulent transport (e) Pressure transport (f) Viscous transport. R180: —— (Ma-
genta), R550: —— (Blue), R1000: —— (Red), R2000: —— (Green), R5200: —— (Black)

Figure 2. One-dimensional spectral density of production, transport and dissipation of turbulent kinetic energy for case R5200:
(a) y+kxEx,Pk (b) y+kzEz,Pk (c) y+kx(Ex,Tk +Ex,Dk +Ex,Πk ) (d) y+kz(Ez,Tk +Ez,Dk +Ez,Πk ) (e) −y+kxEx,εk (f) −y+kzEz,εk . Red
is positive, white is zero and blue is negative.

Result
The one-dimensional profiles of terms in the Reynolds

stress transport equation for turbulent kinetic energy, TKE
(k = 〈u′iu′i〉/2), are shown in figure 1. There are a few
things that distinguish high Re flows from low Re flows.
First, more TKE is produced and dissipated in the outer re-
gion as Reynolds number increases. Second, the transport
of TKE becomes negative at y+ ≈ 150 in the flows with
Reτ greater than 1000 . This means that TKE is transported
from the overlap region to inner or outer regions at high Re.
Third, the dissipation appears to be developing a plateau
as Re increases, though it may also be developing a sec-

ond peak. Also, the peak of the production increases with
Reynolds number, though very slowly. The individual con-
tributions to the transport term are shown in figure 1(d)-(f).
It is clear that the turbulent transport is the most impor-
tant mechanism at high Re, and the only term that shows
strong Re dependencies. Note that the pressure strain term
is analytically zero due to continuity, so figure figure 1(e)
only reflects pressure transport. The data are available at
http://turbulence.ices.utexas.edu.

The spectral density of the Reynolds stress transport
equation for TKE in R5200 is shown in figure 2. All
quantities are pre-multiplied by wall-normal distance and
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Figure 3. One-dimensional spectral density of turbulent transport of turbulent kinetic energy for case R5200: (a) y+kxEx,Tk,0

(b) y+kzEz,Tk,0 (c) y+kxEx,Tk,1 (d) y+kzEz,Tk,1 . Red is positive, white is zero and blue is negative.

Figure 4. One-dimensional spectral density of transport of turbulent kinetic energy, Tk,1 (see eq (2)), for case R550(Top) and
R5200(Bottom): (a) y+kxEx,Tk,1 (R550) (b) y+kzEz,Tk,1 (R550) (c) y+kxEx,Tk,1 (R5200) (d) y+kzEz,Tk,1 (R5200). Red is positive,
white is zero and blue is negative.

wavenumber. In this flow, there are distinct inner- and
outer- peaks in the spectra of u′u′ and −u′v′ from the flow
at Reτ ≈ 5200 (Lee et al., 2013). Though it is hard to see
in figure 2(a-b), there are also outer-peaks in pre-multiplied
production at kxδ ≈ 2 or kzδ ≈ 6 and y+ ≈ 1000. This is
expected because the production of TKE is the product of
turbulent stress, −〈u′v′〉, and the mean velocity gradient,
〈∂U+/∂ y+〉. It is generally expected that the production
of TKE will be positive. However, there is a small region
where the spectral density of the production term is neg-
ative near y+ ≈ 20 and kxδ ≈ 600. Such a negative re-
gion is not observed in the spanwise spectrum. The nega-
tive region is observed at approximately same wall-distance

and wavenumber at all Reynolds numbers simulated. Since
〈∂U+/∂ y+〉 is always positive, the negative region of TKE
production is from a negative region of the energy spectral
density of −u′v′.

The spectral density of transport, which is the sum of
turbulent, pressure and viscous transport terms is shown in
figure 2(c-d). Three regions can be identified in the figure.
First is the near-wall region (say y+ < 10). TKE is trans-
ported into this region across a wide range of length scales,
including very large scales with kxδ < 1. This transport at
large scale presumably represents modulation of the near-
wall flow by large-scale motions in the outer flow. The
second region is 10 < y+ < 100. This region is distin-
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Figure 5. One-dimensional spectral density of pressure strain of velocity fluctuations: (a) y+kxEx,Πs,uu (b) y+kzEz,Πs,uu (c)
y+kxEx,Πs,vv (d) y+kzEz,Πs,vv (e) y+kxEx,Πs,ww (f) y+kzEz,Πs,ww , R5200 Red is positive, white is zero and blue is negative.

guished by negative peaks at around y+ ≈ 20, kxδ ≈ 30 and
kzδ ≈ 300, with positive regions at higher wavenumbers.
Note that kzδ ≈ 300 implies a wavelength of approximate
100 plus units, consistent with the streak spacing. In the
y+ > 100 region, the negative and positive contribution to
the transport shift to larger scale with increasing y+. The
negative part has an outer peak at y+ ≈ 1000. Also note
that the variation in scale with y+ of the negative contribu-
tion is more rapid than the positive part, especially in the x
direction. The dissipation spectra follows the trend of the
positive part of the transport spectra.

The turbulent transport is dominant among the trans-
port terms as shown in figure 1. In figure 3, we have decom-
posed the turbulent transport as in (2). Figure 3(a-b) can be
interpreted as TKE transfer in scale in the x and z direc-
tions, since for any y+, the integral in kx or kz of these terms
is zero. Figure 3(c-d) then represents TKE transport in the
y direction. From these it is clear that for y+ > 100, the
transport term spectra shown in figure 2 are dominated by
transfer of energy in scale in x and z. The more complicated
structure is shown in the intermediate range, 10< y+ < 100.
Significant TKE transport across y+ ≈ 100 occurs at very
small scales (say kxδ ≈ 400). Large scales become more
important to y-transport in the region, y+ > 100, with a
negative peak at kxδ ≈ 0.6, in the very large scale motion
(VLSM) regime. We compare ETk,1 form R5200 to ETk,1 in
R550 in figure 4 to investigate the Reynolds number depen-
dence. It was shown above that the turbulent transport terms
goes negative as Reynolds number increases in the region,
y+ > 150 (Figure 1(b,d)). As shown in figure 4(a-b), the
large scale negative contributions for y+ > 150 are weak in
R550. However, when Reynolds number increases, a clear
VLSM structure is observed which acts as the key mecha-
nism to transport TKE from outer to inner regions.

TKE is an important quantity characterizing the
strength of turbulence, but results so far, have not allow
us to see the interactions between the velocity components.
Here, we have focus on pressure-strain term in the RTSE.
Pressure-strain is the term that accounts for transfer of en-
ergy from u′u′ to v′v′ and w′w′. The spectral density of the
pressure-strain terms are shown in figure 5. Note that the
sum of spectral density of each components is zero at any
wall-distance or wavenumber, i.e. ∑kx

(Ex,Πs,uu +Ex,Πs,vv +
Ex,Πs,ww )= 0. As expected, u′u′ is not receiving energy from
other components. The energy transfer between v′v′ and
w′w′ is somewhat interesting. As shown in figure 5(c-d) the
energy transfers from v′v′ to w′w′ near the wall. This can
be explained by vertically moving fluids hitting the wall,
the so-called “splat effect”. It is observed that the energy
of large scale motion of w′w′ is transported to v′v′ only in
streamwise the direction. Also, the energy from very small
scale motion of w′w′ at kz ≈ 1000 and y+ ≈ 10 transfers
to other components only in the spanwise direction. The
mechanism of this energy transfer is not clear.
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Conclusion
The Reynolds stress transport equations are a great sta-

tistical tool to characterize the wall-normal dynamics of tur-
bulence. But of course, transfer in scale is a critical turbu-
lence phenomenon. Starting from the two-point correlation
evolution equation, we performed spectral analysis to al-
low the study of scale dependence in RSTE. We observed
that there is modulation of the near-wall flow by large (or
very large) scale motion in outer region. Also, it is revealed
that the large scale motions are important to the physics at
overlap region, roughly at 100 < y+ < 1000, especially at
high Reynolds number. The spectral analysis of pressure-
strain terms similarly enabled study of the energy transfer
between turbulent fluctuation in different directions. Sur-
prisingly, energy transports from w′w′ to v′v′ by large scale
motion in streamwise direction and small scale motion in
spanwise direction were observed.

Investigation of the physical mechanisms responsible
for the observations made here is ongoing. But, it is clear
that the spectral analysis of the Reynolds stress transport
equations is a powerful tool to analyze wall-bounded turbu-
lence. A more detailed analysis of the turbulent transport
term in overlap region is needed since it is the key quantity
that displays differences between low and high Reynolds
number flows. In addition to the velocity variance terms,
the same analysis can be done for Reynolds shear stress,
−u′v′.
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