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ABSTRACT
Very recently, we have performed a numerical experi-

ment designed to simulate only the energy-containing mo-
tions at a prescribed spanwise length scale using their self-
sustaining nature (Hwang, 2015). The computed statisti-
cal structure of each of the energy containing-motions have
been found to be self-similar with respect to the spanwise
length scale, proportional to the distance from the wall.
More importantly, the statistical structure was found to be
remarkably similar to that given in the original theory of
Townsend, demonstrating the existence of the attached ed-
dies as energy-containing motions contributing to the log-
arithmic layer. In this work, we extend the previous work
to explore the dynamical self-similarity of each of the at-
tached eddies. It is shown that each of the attached eddies
exhibit the so-called ‘self-sustaining process’ composed of
1) streak amplification via the lift-up effect, 2) streak break-
down via the secondary instability, 3) nonlinear regenera-
tion of streamwise vortical structure. This process occurs
self-similarly with respect to the spanwise length scale of
each of the attached eddies and results in the time scale
given by Tuτ/Lz ≃ 2 ∼ 3.

Introduction
Although a non-negligible number of literatures have

used the term ‘attached eddies’ to refer to some fluid mo-
tions contributing to the region close the wall, Townsend
(1976) originally introduced it to strictly refer to the energy-
containing motions, the size of which is proportional to the
distance from the wall. Townsend (1976) insightfully de-
duced such a nature of the energy-containing motions in
wall-bounded turbulence from the logarithmic dependence
of the mean-velocity profile (i.e. attached eddy hypothesis),
thus the term ‘attached eddies’ basically indicates all the
energy-containing motions (i.e. coherent structures) given
in a hierarchial form in any kind of wall-bounded turbulent
flows showing the logarithmic mean-velocity profile (Perry
& Chong, 1982).

Under the assumption that each of the attached eddies

is self-similar with respect to its size, Townsend (1976) pre-
dicted that the wall-normal profile of turbulence intensities
of the wall-parallel velocity components would exhibit a
logarithmic dependence, while that of the wall-normal ve-
locity component and the Reynolds stress would be constant
in the logarithmic region. During the last decade, there have
been a growing body of numerical and experimental evi-
dence which confirms this feature (Jiménez & Hoyas, 2008;
Marusic et al., 2013), and it is now very likely that the co-
herent structures in wall-bounded turbulence are in the form
of Townsend’s attached eddies.

Very recently, we have performed a numerical ex-
periment, which is designed to simulate only the energy-
containing motions at a prescribed spanwise length scale
(Hwang, 2015) using their self-sustaining nature (Hwang &
Cossu, 2010b, 2011). It was shown that the self-sustaining
energy-containing motions at a given spanwise length scale
is self-similar with respect to the spanwise length scale, and
their statistical structure is consistent with that given in the
original theory, demonstrating the existence of the attached
eddies with directly supporting evidence. The single at-
tached eddy was also found to be composed of a long streak
reaching the near-wall region and several quasi-streamwise
vortices aligned to that. For a given spanwise length be-
tween λ+

z ≃ 100 and λz ≃ 1.5h in a turbulent channel where
h is its half height, the former is found to be self-similar
along

y ≃ 0.1λz and λx ≃ 10λz, (1a)

while the latter is self-similar along

y ≃ 0.5 ∼ 0.7λz and λx ≃ 2 ∼ 3λz. (1b)

This scaling further suggests that the smallest attached
eddy with λ+

z ≃ 100 would be a near-wall coherent mo-
tion given in the form of a streak and quasi-streamwise vor-
tices aligned to that, whereas the largest one with λz ≃ 1.5h
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would be an outer motion with a very-large-scale motion
(VLSM) and large-scale motions (LSMs) aligned to that.
The attached eddies in-between, the size of which is pro-
portional to their distance from the wall, contribute to the
logarithmic region and fill the space caused by the length
scale separation. It should be stressed that, to the best of our
knowledge, this description incorporates all the coherent
structures known in high-Reynolds-number wall-bounded
turbulence.

The goal of the present study is to extend our recent
work (Hwang, 2015) in order to explore the ‘dynamical’
self-similarity of the attached eddies. To this end, we will
consider the smallest computational domain, which allows
each of the attached eddies at the given spanwise length
scale to be sustained by themselves, and examine the de-
tailed physical processes that a single attached eddy experi-
ences.

Numerical experiment
The minimal attached eddies
The numerical experiment in the present study is performed
in a turbulent channel. We denote x, y, and z as the stream-
wise, wall-normal, and spanwise directions, respectively.
The height of the channel is chosen to be 2h, and its upper
and lower walls are set to be located at y = 0 and y = 2h,
respectively. As in Hwang (2015), the numerical experi-
ment of the present study has been carried out with the static
Smagorinsky model, which will be used to damp out the
motions smaller than a given spanwise length scale. The
residual stress of the static Smagorinsky model is modelled
as τi j −τkkδi j/3 = −2νt S̃i j with νt = (Cs∆̃)2D(2S̃i j S̃i j)

1/2,
where .̃ indicates the filtered quantity with the correspond-
ing LES filter, Si j the strain-rate tensor, Cs the Smagorinky,
∆̃ the filter width of the present LES which uses the grid fil-
ter, and D = 1 − exp[−(y+/A+)3] the Van Driest damping
function, respectively. We note that the Smagorinsky con-
stant, which generates the best posterior performance, has
been known to be Cs = 0.05 (Härtel & Kleiser, 1998), thus
this value will be used for reference simulations.

As in Hwang (2015), self-sustaining attached eddies
at a given spanwise length scale are isolated by combin-
ing the over-damped LES based on the Smagorinsky model
(Hwang & Cossu, 2010b) with explicit filtering technique
combining with the spanwise narrow computational domain
(Hwang, 2013). The over-damped LES, which damps out
the motions smaller than the given spanwise length scale
λz,0, is realised by increasing the Smagorinsky constant Cs
to an appropriate value, whereas the explicit filtering tech-
nique is implemented by considering the spanwise compu-
tational box size Lz = λz,0 with removal of the spanwise uni-
form motions R̂HSu(y;kx ̸= 0,kz = 0) = 0 and R̂HSv(y;kx ̸=
0,kz = 0) = 0 where R̂HSu and R̂HSv are respectively the
Fourier-transformed streamwise and wall-normal compo-
nents of the right-hand side of the momentum equation. For
further details, the reader may refer to Hwang (2015).

As mentioned, in the present study, we will consider
the smallest computational box which allows the given at-
tached eddies to be sustained by themselves (i.e. the mini-
mal unit). The size of such a minimal computational box
has been found to be Lx/Lz = 2.0 for a given Lz = λz,0
(Hwang & Cossu, 2011). In the present study, we will ex-
amine the detailed turn-over of a single attached eddy in
the corresponding minimal unit with particular emphasis
on comparison of the attached eddy in full-scale simulation

with Cs = 0.05 with that in the filtered simulation with an
appropriate value of Cs > 0.5 which isolates the attached
eddy at the given spanwise length scale. The detailed com-
putational parameter is summarised in table 1.

Case Reτ Lz Nx ×Nz Cs

L950a 941 0.75 36×81×36 0.05

LS950a 936 0.75 36×81×36 0.20

L950b 976 1.0 48×81×48 0.05

LS950b 1004 1.0 48×81×48 0.25

O950 997 1.5 72×81×72 0.05

OS950 1152 1.5 72×81×72 0.40

L1800a 1446 0.375 36×129×36 0.05

LS1800a 1438 0.375 36×129×36 0.20

L1800b 1606 0.5 48×129×48 0.05

LS1800b 1685 0.5 48×129×48 0.30

L1800c 1745 0.75 72×129×72 0.05

LS1800c 1954 0.75 72×129×72 0.40

Table 1. Simulation parameters. Here, Lx = 2Lz and
the resolution is before dealiasing. We note that the first
six simulations are performed at Rem = 38133 (Rem the
Reynolds number based on the bulk velocity), while the rest
of the simulations are conducted at Rem = 73333.

Results and discussions
The outer attached eddies: VLSM and LSM
We first consider the largest minimal attached eddies scaling
in the outer units (O950 and OS950 in table 1). As shown by
Hwang (2015), the spanwise size of the attached eddies of
this type is λz = 1.5h, and it consists of a long streaky mo-
tions and vortical structures, which are respectively known
as VLSM and LSMs. We note that the VLSM is the major
carrier of streamwise velocity fluctuations while the LSM
is featured to be relatively isotropic in the sense that they
carry all the velocity fluctuations. Given this nature, the
VLSM would be characterised well with the streamwise ve-
locity fluctuation whereas the LSM would be well featured
by the wall-normal or spanwise velocity fluctuations, as also
shown by Hwang (2015). We therefore introduce the tem-
poral evolution of the two structures by respectively moni-
toring the streamwise and wall-normal turbulent kinetic en-
ergies, Eu and Ev, obtained by integrating over the lower
half of the computational domain: i.e.

Eu = 2/V
∫ Lx

0

∫ Lz

0

∫ Ly/2

0
(u′/uτ )

2 dydzdx, (2a)

Ev = 2/V
∫ Lx

0

∫ Lz

0

∫ Ly/2

0
(v′/uτ )

2 dydzdx, (2b)

where V = LxLyLz.
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Figure 1. Time evolution of the flow field (O950): (a) time
trace of the streamwise and wall-normal turbulent kinetic
energies Eu (solid) and Ev (dashed); (b) Magnification of
(a) for tuτ/h ∈ [158,164]; (c − f ) the corresponding flow
visualisation at tuτ/h = 159,160.2,160.9,161.5. In (c− f ),
the red and blue iso surfaces indicate u+ = −3.2 and v+ =

1.4, respectively.

Fig. 1 shows the temporal evolution of the flow field
of O950 which also contains the energy-containing motions
at λz < Lz. Here, we have to remind the reader that, due
to this nature of O950, both Eu and Ev, defined in (2), do
not strictly monitor the evolution of the outer streaky and
vortical structures, although they presumably provide im-
portant physical insight into their temporal evolution given
their very energetic nature over the entire computational do-
main. The time trace of Eu and Ev is reported in Fig. 1.
Both Eu and Ev exhibit a relatively large-scale intermittent
oscillation roughly with the period Tuτ/h = 2 ∼ 4. Further-
more, it appears that the timings of the local maximum of
Eu and Ev shows a certain phase difference although it is
difficult to assert a certain relationship between Eu and Ev
solely with their time trace. For instance, at tuτ/h = 159,
Ev is around the local maximum whereas Eu is at fairly low-
energy state (fig 1b). In contrary, at tuτ/h = 160.2, Ev is
roughly at low-energy state whereas Eu becomes consider-
ably large (fig 1b).

The temporal evolution of the flow fields visualised in
Figs. 1 (c − f ) clearly reveals an interactive dynamics be-
tween the structures respectively represented by the stream-
wise velocity fluctuations. At tuτ/h = 159 (fig 1c), the
flow-field exhibits strong v structures with weak u struc-
tures. As the time goes by, the v structures becomes weak-
ened while the u structures are significantly amplified with
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Figure 2. Time evolution of the flow field (OS950): (a)
time trace of the streamwise and wall-normal turbulent ki-
netic energies Eu (solid) and Ev (dashed); (b) Magnification
of (a) for tuτ/h ∈ [564,572]; (c− f ) the corresponding flow
visualisation at tuτ/h = 565,568.5,569.3,570. In (c − f ),
the red and blue iso surfaces indicate u+ = −4 and v+ = 1.5,
respectively.

formation of a large-scale streaky structure, which is clearly
the very-large-scale motions in the minimal box. The am-
plification of the streaky structure carrying intensity energy
of the streamwise velocity fluctuation is clearly due to the
lift-up effect, which transforms vortical structures carrying
the wall-normal velocity fluctuation to streaky structure car-
rying the streamwise velocity fluctuation by taking energy
from the mean shear (del Álamo & Jiménez, 2006; Pujals
et al., 2009; Hwang & Cossu, 2010a). It is further interest-
ing to note that the amplified streaky structure subsequently
experiences strong sinuous bending along the streamwise
direction, reminiscent of sinuous instability of amplified
streaks (Park et al., 2011). The amplitude of the bent streak
becomes gradually weakened and the v structures are signif-
icantly amplified again. This process observed here is ex-
actly the same as the bursting in the logarithmic and outer
regions described by Flores & Jiménez (2010).

Now, we increase Cs until we remove all the energy-
containing structures except at the largest one at λz = 1.5h
(i.e. OS950), and inspect temporal evolution of the flow
field as shown in Fig. 2. As in O950 which contains all
the energy-containing motions, the time trace of Eu and Ev
oscillates with the time scale of Tuτ/h = 2 ∼ 4 and they
show a certain phase difference from each other (figs 2a,b).
The flow fields shown in Figs 2(c − f ) clearly suggest
that qualitatively the same behaviour is observed in the
filtered simulation OS950: 1) streak amplification via the
lift-up effect (from fig 2a to b); 2) sinuous bending via the
secondary instability (from fig 2b to c); 3) regeneration of
the vortical structure containing the wall-normal velocity
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(from fig 2c to d). It should be stress that this process
is very similar to the so-called self-sustaining process
described by Hamilton et al. (1995), suggesting that the
bursting observed both in O950 and OS950 essentially
originates from the self-sustaining dynamics of the outer
structures composed of a VLSM and LSMs aligned to that.
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Figure 3. Auto- and cross-correlation functions of (a,c)
O950 and (b,d) OS950 : (a,b) Cuu(τ) (solid), Cvv(τ)

(dashed), Cww(τ) (dashdotted); (c,d) Cuv(τ) (solid), Cvw(τ)

(dashed), Cuw(τ) (dashdotted).

To more quantitatively examine the bursting behaviour
of the outer structures in the minimal box, we compute auto-
and cross-correlation functions in time using the time trace
of Eu, Ev and Ew (Ew is defined in the same way with (2)):
for example, the cross-correlation function Cuv is defined
using Eu(t) and Ev(t) such that

Cuv(τ) =
⟨Eu(t + τ)Ev(t)⟩√
⟨Eu(t)2⟩

√
⟨Ev(t)2⟩

, (3)

where ⟨·⟩ denote the time average. All the possible combi-
nations among Eu, Ev and Ew are considered to compute
such auto- and cross-correlation functions, which are re-
ported in Fig. 3. We remind that, in the case of O950,
the energy traces Eu, Ev and Ew are obtained by integrating
over the entire computational domain, thereby they do not
exactly represent the behaviour of the outer-scaling struc-
tures. On the other hand, the energy traces of OS950 con-
tains only the outer-scaling structures although their dynam-
ics may also be affected by the non-realistic eddy viscosity.
Therefore, Fig. 3 has to be carefully examined, keeping this
in mind.

The auto-correlation functions, Cuu, Cvv and Cww, of
both O950 (fig 3a) and OS950 (fig 3b) reach or become
close to zero at |τuτ/h| ≃ 1 ∼ 2, consistent with the burst-
ing period Tuτ/h ≃ 2 ∼ 4. The cross-correlation func-
tions, Cuv, Cuw and Cvw, also show non-trivial behaviours at
|τuτ/h| < 2 for both O950 and OS950. Especially, Cvw of
both of the simulations shows very strong correlations (i.e.
Cvw(τ = 0) ≃ 0.7 ∼ 0.8), indicating that the v velocity fluc-
tuations visualised in figs 1 and 2 are basically a part of the

vortical structure mainly composed of the cross-streamwise
velocity components (i.e. streamwise vortices). On the
other hand, Cuv and Cuw of both of the simulations clearly
show the phase difference between Eu and Ev (or Ew). Since
Eu roughly represents the energy of the streaky structure
and both Ev and Ew represent the energy of the streamwise
vortical structure, this clearly suggests the presence of the
self-sustaining process in O950 simulation described by the
interactive dynamics between streaks and streamwise vor-
tices observed in OS950: i.e. by streak amplification, its
breakdown via the sinuous instability, and subsequent re-
generation of vortical structures.

Although the correlation functions of O950 and
OS950 are found to behave qualitatively similar, it should
also be mentioned that the two simulations exhibit some
quantitative differences. We are currently investigating
the origin of this difference and have been finding that
the difference originate form the small-scale fluctuations
in O950 as well as from the artificial eddy viscosity in
OS950. However, the detailed difference will not be dis-
cussed in this paper, and will be presented in the near future.

The attached eddies in the logarithmic region
Now, we consider energy-containing motions, the spanwise
length scale of which is proportional to the distance from
the wall: i.e. λz ∼ y. As discussed, the energy-containing
motions larger than at a given spanwise length scale at λz,0
are removed by setting the spanwise computational domain
to be Lz = λz,0 with the explicit filtering of the spanwise uni-
form components, while those smaller than λz,0 are damped
out by increasing Cs. We start by confirming that the iso-
lated energy-containing motions are the attached eddies.
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Figure 4. Normalised second-order statistics of the mo-
tions rescaled with the given spanwise length Lz: (a)

streamwise velocity; (b) wall-normal velocity; (c) span-
wise velocity; (d) Reynolds stress. Here, , from
Reτ ≃ 950 (LS950a, LS950b); , from Reτ ≃ 1800
(LS1800a, LS1800b, LS1800c).

Figure 4 shows velocity fluctuations of the isolated mo-
tions at a given spanwise length scale. Here, each of the ve-
locity fluctuations is normalised with its peak value, and the
wall-normal coordinate is rescaled with the spanwise length
scale, λz,0(= Lz) (table 1). As in Hwang (2015), all of the
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velocity fluctuations and the Reynolds stress are found to be
self-similar with the spanwise length scale Lz for y ≤ 0.3 ∼
0.4Lz. It is apparent that the self-similar part of the iso-
lated attached eddies exhibit the statistical structure consis-
tent with those hypothesised by Townsend (1976): i.e. the
streamwise and the spanwise velocity fluctuations clearly
show non-negligible amounts of energy close to the wall
(y < 0.05Lz in figures 4a and c), whereas the wall-normal
velocity fluctuation and the Reynolds stress are consider-
ably smaller in that region (figures 4b and d). The non-self-
similarity of the isolated attached eddies for y ≤ 0.3 ∼ 0.4Lz
is simply because the wall-normal locations of the non-self-
similar part are supposed to to be ‘empty’ due to the absence
of the motions at λz > Lz. As discussed in Hwang (2015),
the non-self-similar part would therefore simply be the fluc-
tuation induced by the self-similar part.
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Figure 5. Auto- and cross-correlation functions:
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LS950a; LS950b; LS1800a;
LS1800b; LS1800c.

The auto- and cross-correlation functions, Cuu, Cvv,
and Cuv, are computed by considering five different attached
eddies in the full and the filtered simulations (see table 1).
The time scale τ of the computed correlation functions is
then rescaled with the spanwise length scale Lz of each of
the simulations to examine dynamical self-similarity of the
attached eddies. The auto- and cross-correlation functions
in the rescaled time coordinate τuτ/h are shown in Fig.
5. All the correlation functions of both the full and the
filtered simulations reasonably well collapse with one an-
other. Especially, the cross-correlation functions (Cuv(τ))
of both of the simulation shows the phase difference be-
tween Eu and Ev and are found to be qualitatively similar

to each other. This strongly suggests that the dynamical
self-similarity found here is due to the self-sustaining nature
of each of the attached eddies described previously. Fur-
thermore, given that fact that both Cuu and Cvv reach zero
roughly at |τuτ/h| = 1, suggesting that the time scale of
the self-sustaining process involving streak amplification,
breakdown and regeneration of streamwise vortical struc-
tures would be Tuτ/Lz ≃ 2 ∼ 4.

Concluding remarks
So far, we have examined the detailed physical process

of the attached eddies by inspecting their temporal evolu-
tion using the full and filtered simulations in the minimal
computational box for each of the attached eddies. The
qualitative similarity between the time correlation functions
of the full and the filtered simulations strongly suggest that
the attached eddies at all length scale bear a self-sustaining
mechanism composed of streak amplification via the ‘lift-
up’ effect, breakdown via its instability, and regeneration of
streamwise vortical structures. The time scale of this pro-
cess, which has also been known as ‘bursting’, is found to
be

Tuτ/Lz ≃ 2 ∼ 3. (4)

This time scale compares reasonably well with the
one found in Flores & Jiménez (2010), Tuτ/y ≃ 6, if
y ≃ 0.3 ∼ 0.4Lz is considered as shown in Fig. 4. This
suggests that the bursting found in Flores & Jiménez
(2010) is likely due to the self-similar cyclic dynamics
caused by the self-sustaining process. Furthermore, if
the spanwise length scale is chosen as the spanwise
spacing of the near-wall motions (i.e. L+

z ≃ 100), the
well-known time scale of near-wall bursting is obtained
(T ≃ 200 ∼ 300ν/u2

τ ) Jiménez & Moin (1991). On the
other hand, if the spanwise spacing of the large-scale and
the very-large-scale motions is chosen (i.e. Lz ≃ 1.5h), it
well retrieves Tuτ/h ≃ 3 ∼ 4.5. This self-similarity of the
dynamics complements our recent work (Hwang, 2015)
which established the self-similarity of statistical structure
of the attached eddies.
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