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ABSTRACT
The characteristics of three-dimensional intenseuv

coherent structures (Qs) in a strongly decelerated large-
velocity-defect boundary layer are analysed by direct nu-
merical simulation. The Reynolds number close to the exit
is Reθ = 2175 and the shape factorH = 2.5. In the region of
large-velocity-defect flow, the maxima of Reynolds stresses
and of production of turbulent kinetic energy are located in
the middle of the boundary layer. The Q2 and Q4 structures
are found to be different from those of turbulent channel
flows studied by Lozano-Durán et al. (J. Fluid Mech., vol.
694, 2012). They are less streamwise elongated and less
present near the wall. Moreover, contrary to channel flows,
wall-detached Q2 and Q4 structures are more frequent and
carry a much larger amount of the Reynolds shear stress.

INTRODUCTION
A turbulent boundary layer (TBL) subjected to a strong

or prolonged adverse pressure gradient (APG) develops a
large mean velocity defect. The mean shear rates in the
outer region are no longer small in comparison to their near-
wall counterparts while near the wall, the importance of vis-
cous forces and of the wall shear stress diminishes. As a re-
sult, in contrast to canonical wall-bounded turbulent flows,
the near-wall turbulent kinetic energy production peak is ab-
sent or very small and the main production peak is found in
the outer region of the flow (Skåre & Krogstad, 1994; Na
& Moin, 1998; Elsberryet al., 2000). By analysing sev-
eral large-velocity-defect TBLs, Gungoret al. (2014) have
concluded that these boundary layers are globally less ef-
ficient in extracting turbulent energy from the mean flow
than the zero-pressure gradient (ZPG) TBL. The Reynolds
stresses and the production of turbulent kinetic energy were
found to be weaker in the lower half of the large-velocity-
defect boundary layers than in the ZPG TBL. Furthermore,
the outer-region turbulent statistics of TBLs close to detach-
ment were found to resemble those of single-stream mixing
layers. These various observations suggest that the physi-
cal mechanisms and coherent structures responsible for the

production and transport of turbulence might be different.
Unfortunately, detailed analyses of the coherent struc-

tures found in APG TBLs are rare. By analyzing the DNS
data of a turbulent separation bubble of Na & Moin (1998),
Chonget al. (1998) suggested that in the APG zone prior
to detachment more of the eddies which contribute to the
Reynolds shear stress are eddies which are not connected to
the wall. In the case of an equilibrium APG TBL, Krogstad
& Skåre (1995) found that the lower part of the bound-
ary layer is strongly dominated by Q4 motions, while in
a ZPG TBL second and fourth quadrant events are equally
important. The streamwise correlation length ofu was also
found to be considerably shorter in the APG case through-
out the boundary layer, a result also obtained later in dif-
ferent large-velocity-defect TBLs by Rahgozar & Maciel
(2012) and Gungoret al. (2014). Rahgozar & Maciel (2011)
observed that the predominance of streakyu-structures in
the outer region of a large-velocity-defect TBL is less than
in the ZPG case. This predominance even disappears near
detachment. By analysing the same flow, Rahgozar & Ma-
ciel (2012) found that large-scaleu-structures are less elon-
gated than those of ZPG TBLs, especially in the lower part
of the boundary layer.

Quadrant analysis in the plane of streamwise and wall-
normal velocity fluctuations(u,v) has been used extensively
in the past to investigate the bursting process close to the
wall (Robinson, 1991). Later this type of analysis was ex-
tended to study the outer structures (Wark & Nagib, 1991;
Lozano-Duŕan et al., 2012). Coherent and intense Q2 and
Q4 events carry most of the Reynolds shear stress and as
such they play a crucial role in terms of momentum flux
and production of turbulent energy (Lozano-Durán et al.,
2012). Therefore, it is clear that their study is fundamen-
tal to increase the comprehension and subsequent control
of these turbulent flows. It is thus only natural to extend
the quadrant analysis to three-dimensional structures as was
first done for channels by Lozano-Duránet al. (2012) (here-
after referred to as LFJ) and as is done in this article for an
APG flow. Understanding the three-dimensional organiza-
tion and dimensions of the structures related to the Reynolds
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Figure 1. Contours of log10(−〈uv〉/U2
e0
) in the lower half of the domain. The axes are not to scale. The black contour line

is the zero contour of the streamwise mean velocityU , and marks locations of the trip element (80≤ x/θ0 ≤ 130) and the
separation bubble. The solid magenta line shows the boundary layer thickness. The vertical black lines are the selected two
stations where(Reθ ,H) = (1755,2.0) and(2175,2.5) respectively.

shear stress is a further step but certainly not the last one in
learning how turbulent wall bounded flows are organized.

LFJ called Qs the quadrant-splitted three-dimensional
uv structures. They found that wall-detached Qs are back-
ground stress fluctuations while wall-attached Qs are big-
ger and carry most of the Reynolds shear stress in chan-
nel flows. The number of wall-attached Qs decreases away
from the wall, but the fraction of Reynolds shear stress that
they carry is independent of their size and location. More
recently, Lozano-Duŕan & Jiménez (2014) studied the time
evolution of these Qs. They found that wall-attached Q2s
and Q4s are essentially mirror images of each other and
they suggested that they are both manifestations of a sin-
gle quasi-streamwise roller lying between them. They also
showed that their dynamics is controlled by the local mean
shear and that most of them are not born close to the wall.

In the present work, the geometric and kinematic
characteristics of Q structures in a strongly decelerated
non-equilibrium boundary layer is investigated to advance
our knowledge and understanding of APG boundary layer
flows. Some comparisons with the results obtained by LFJ
are made.

METHODOLOGY
Numerical Methodology

The database used in the present study was obtained via
direct numerical simulation (DNS) by Gungoret al. (2014).
The DNS was performed with a parallelpiped domain over a
smooth no-slip wall, with spanwise periodicity and stream-
wise non-periodic inflow and outflow. The Navier-Stokes
equations were integrated using a fractional step method
on a staggered grid, with third-order Runge-Kutta time-
integration, fourth-order compact spatial discretization for
the convective and viscous terms, and second-order dis-
cretization for the pressure in the directions perpendicular
to the span, which is spectral. The computational box di-
mensions are(Lx,Ly,Lz)/θ0 = (2380,450,1100), whereθ0
is the momentum thickness measured at the inflow, cor-
responding to 1537× 201× 768 grid points. The resolu-
tions in wall units atReθ = 2175 are(∆x+g ,∆y+g,min,∆z+g ) =
(2.2,0.2,2.0). The coarsest resolution alongx and z in
terms of the Kolmogorov lengthη is found near the wall
at reattachment, where∆xg/η ≈ 10.

The desired constant streamwise velocity gradient is
controlled by imposing a constant uniform suction at the
top simulation boundary. The streamwise and spanwise

velocities at the top boundary satisfy free-slip conditions.
The laminar Hiemenz profile is prescribed at the inflow
and the velocities at the outflow are estimated by a convec-
tive boundary condition, with small corrections to enforce
global mass conservation (Simenset al., 2009). Transition
is triggered by a disturbance strip located close to the inflow
and modeled using the immersed boundary method (Simens
& Gungor, 2013).

Flow Description
The flow is initially laminar, separates, transitions

within the separation bubble, reattaches and develops into
an attached turbulent APG boundary layer, the latter being
the flow zone of interest for this study. The disturbance strip
located upstream of the bubble does not cause the flow tran-
sition but it generates perturbations that hasten the bubble
reattachment (Simens & Gungor, 2013). Figure 1 shows the
distribution in the lower half of the domain of the logarithm
of the Reynolds shear stress normalized with the square of
the inflow freestream velocity. The logarithm is used in or-
der to reveal better the wall-normal variation in the down-
stream region where the Reynolds shear stress has glob-
ally decreased. The time-averaged separated region and the
boundary layer growth are also indicated in the same fig-
ure with thick solid lines. The shear layer formed by the
separation bubble becomes unstable and sheds large, span-
wise vortices. The large amplitude Reynolds shear stress
seen in figure 1 aroundx/θ0 = 700 are due to the regular
shedding of these vortical structures. The Reynolds shear
stress decreases downstream and its wall-normal distribu-
tion becomes typical of large-velocity-defect TBLs near the
end of the solution domain, with a wall-normal maximum in
the middle of the boundary layer. By analyzing two-point
cross-correlation coefficients, Gungoret al. (2014) found
that the influence of the separated region continues up to
x/θ0 ≈ 1800 and only becomes small beyond that location.
The attached turbulent boundary layer is still recovering
from the effects of the shear layer instability all the way up
to the end of the computational domain. The present study
focuses on the region beyondx/θ0 = 1550 where these ef-
fects are relatively small but have nonetheless to be taken
into account.

Figure 2 shows the streamwise evolution, in the re-
gion downstream of the separation bubble, of the external
velocity Ue, the shape factorH and of two outer-region
pressure gradient parameters:βzs = −(δ/Uzs)(dUe/dx),
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Figure 2. Streamwise evolution, downstream of the sepa-
ration bubble, of:Ue/Ue0, black; βzs ×103, red; β , green;
H, blue.

where Uzs = Ueδ ∗/δ is the Zagarola-Smits velocity,
and Rotta-Clauser’s pressure gradient parameterβ =
−(∆/uτ )(dUe/dx), where ∆ = δ ∗Ue/uτ is the Rotta-
Clauser length scale.β is the traditional pressure gradient
parameter that assumes the outer region velocity scale to be
uτ . Because of flow curvature introduced by the outlet and
top boundary conditions,Ue does not decrease linearly. But
interestingly, the flow conditions lead to a pressure gradi-
ent parameterβzs that increases in an almost linear fashion.
Correspondingly, the rapid increase ofH is indicative of the
strong non-equilibrium nature of the flow.

Extraction of Q Structures
Since we would like to consider Q structures in an APG

boundary layer in the absence of large-scale perturbations
and at a sufficiently high Reynolds number, the region of the
flow used for the extraction of the Qs starts atx/θ0 = 1546
and ends atx/θ0 = 2180 (Reθ = 1314−2207). In this re-
gion, the boundary layer is in strong non-equilibrium state
and possesses a large mean velocity defect (H = 1.72−
2.56). The box coversδ0.995/θ0 ≈ 97− 184, with an av-
erage ofδa/θ0 = 140.7. The box dimensions for the extrac-
tion of the Q structures are(Bx,By,Bz)/δa = (4.5,2,8.0).

The procedure adopted to identify the Qs follows the
method used by LFJ. The Qs are defined as regions of con-
nected points that satisfy simultaneously two conditions.
The first condition is|u(x)v(x)| > H∗u′v′, whereu′ andv′

are respectively the streamwise and wall-normal standard
deviations of velocity fluctuations andH∗ is the threshold
constant, also called hyperbolic-hole size. The second con-
dition is that all points within a Q structure are in the same
quadrant of theu, v space. Point connectivity is defined
with the six orthogonal neighbours. Following the notation
of LFJ, the Q2 and Q4 structures will be referred as Q−, and
the Q1s and Q3s as Q+ hereafter.

As in LFJ a percolation analysis has been performed to
determine a value forH∗ that gives an equilibrium between
detecting only a few very big objects and detecting only
a few small and very intense Qs. In contrast to LFJ, the
percolation test was performed for each Q type separately.
The results shown in figure 3 are averages over 31 fields
of the parameters. Since the Qs are identified according
to their uv quadrant, the ratio of the volume of the largest
Q in one field,Vlar, to the volume of all identified Qs in
that field,Vtot , does not tend to one asH∗ decreases. Qs
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Figure 3. Percolation diagram for the identification of Qs:
Q1, blue; Q2, red; Q3, black; Q4, green. Average over 31
fields of: Vlar/Vtot , solid lines;N/Nmax, dashed lines. The
vertical dashed line indicates the chosen hyperbolic hole
size ofH∗ = 1.75.

of quadranti cannot fill the space since(uv)i = 0 at points
where the quadrant is noti. Moreover, Qs of a given type
remain disconnected whenH∗ is decreased since they are
surrounded by Qs of other types. Consequently, the ratio
Vlar/Vtot seems to saturate asH∗ is decreased, meaning that
the size of the Qs no longer varies significantly. Neverthe-
less, a percolation crisis seems to take place in the approx-
imate range 1.2≤ H∗ ≤ 2.5 for Q1, Q2 and Q4. A hyper-
bolic hole size ofH∗ = 1.75 is chosen because it is in the
middle of this range and it maximizes the number of Q−s. It
is the same value as used by LFJ in turbulent channel flows.

The linear dimensions of the Qs are defined with a rect-
angular box circumscribing them, the sides of this box being
denoted as∆x, ∆y and∆z and the midheight position of the
box yc. Structures that are as long as the streamwise length
of the extraction box,∆x = Bx, are disregarded because the
length of these structures is undetermined. Similarly, very
small Qs with a volumeV < (∆xg)

3 are rejected because
their sizes are not well resolved on the numerical grid. Fur-
thermore, only Qs whose center is below the boundary layer
thickness,yc/δa ≤ 1, are considered to facilitate a compar-
ison with channel flow.

RESULTS
Before analysing the Q structures, some turbulence

statistics are presented in figure 4 in order to appreciate the
difference between the present large-defect boundary layer
and canonical wall flows. The figure shows the profiles of
the Reynolds shear stress at two streamwise locations cor-
responding toH = 2,Reθ = 1755 andH = 2.5,Reθ = 2175.
They are compared to a profile of the ZPG TBL of Simens
et al. (2009) at a comparable Reynolds number (Reθ =
1975). The Reynolds shear stress is normalised with the
outer velocity scaleUzs. In the present large-defect TBL,
the maximum of the Reynolds shear stress is not near the
wall like in canonical wall flows, but rather in the middle of
the boundary layer. The Reynolds shear stress decreases in
the lower half of the boundary layer as the velocity defect
increases. All these characteristics are commonly found in
large-defect TBLs (Gungoret al., 2014).

The difference between ZPG and large-defect APG
TBLs is even more pronounced for the production of tur-
bulent kinetic energy, also shown in Fig. 4. In large-defect
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Figure 4. Reynolds shear stress, dashed lines, and produc-
tion of turbulent kinetic energy, solid lines, normalized with
Uzs andδ . Present flow:H = 2, blue;H = 2.5, red. ZPG
TBL (Simenset al., 2009), black.

APG TBLs, the maximum production is in the outer re-
gion and production in the upper half of the boundary layer
is comparable to that of ZPG TBLs when scaled prop-
erly (Gungoret al., 2014). A near-wall production peak
exists in the present flow even at the position correspond-
ing to H = 2.5 but it is two orders of magnitude smaller
than in the ZPG TBL at that position and four times smaller
than the outer peak. SinceUzs is proportional to the mean
shear rates present in the outer region, figure 4 indicates that
the present large-defect TBL is globally less efficient in ex-
tracting turbulent energy from the mean flow than the ZPG
one. Note that Gungoret al. (2014) have shown that for two
other types of large-defect TBLs, the Reynolds stresses and
production ofk do not exceed those of the ZPG TBL in the
outer region (when normalized withUzs andδ ). The higher
outer levels found in the present flow could be due to the
presence of the shear layer instability upstream.

The intense Reynolds shear stress coherent structures
are now analysed keeping the previous observations in
mind. With the extraction procedure defined in the previ-
ous section, a total of 1.3× 106 Qs are identified in 460
statistically independent velocity fields. Of those, 56% are
Q− structures. Figure 5 shows the joint probability density
function (pdf) of the minimum and maximum wall distances
for the Q−s. The structures separate into two groups: wall-
attached and wall-detached structures. The wall-attached
Q−s form the narrow vertical band withymin < 0.05δa

of the joint pdf, while wall-detached structures form the
wide diagonal band. Figure 5 shows that the height of
wall-attached Q−s can exceed the boundary layer thickness.
Wall-attached Q−s as tall as approximately 2δa are found.
When comparing with similar joint pdfs of the Q−s of LFJ
for channel flows, it is found that in the present APG flow
the probabilities are higher everywhere, except near the ori-
gin. This implies that, in proportion, there are definitely less
small Q−s close to the wall in the APG TBL than in channel
flows. Such a result is expected since turbulence activity is
significantly reduced near the wall in comparison.

Table 1 summarizes the number and volume fractions
for the various types of Qs. Like in channel flow, Q+s are
less frequent than Q−s, and they occupy a very small frac-
tion of the space, 0.7% against 4% for Q−s. Although the
number fraction of Q2s and Q4s is comparable between the
channel flow and the present flow, the volume occupied by
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these structures is much less for the large-defect TBL. In
particular, Q2s in the TBL occupy less than half the space
of Q2s in channel flow. But one as to keep in mind that in
the case of the TBL, about half the volume of the extraction
box is the freestream, non-turbulent flow.

Wall-attached Q2s and Q4s represent 36% of the total
number of Q−s and 64% of their volume. In channel flow,
these percentages are respectively about 44% and 77%. The
number and size proportions of attached Q−s are there-
fore reduced in a large-velocity-defect boundary layer. Q
structures whose center is in the range 0.2 < yc/δa < 0.6
were also analysed separately. They are important because
0.2< y/δ < 0.6 corresponds to the region of maximum tur-
bulence intensity, Reynolds shear stress and turbulent ki-
netic energy production (see Fig. 4). In that range, 94% of
the Q−s are detached structures.

Figure 6 shows the fraction of the Reynolds shear stress
carried by the various types of attached and detached Qs at
the position corresponding toH = 2.5. With the threshold
value chosen for the extraction of the Qs (H∗ = 1.75), the
identified Q− structures carry 25 to 45% of the Reynolds
shear stress. Attached Q−s dominate in the lower half of
the boundary layer, especially near the wall, and attached
Q4s contribute more than attached Q2s. The latter result
can be put in line with what Krogstad & Skåre (1995) have
found for single-point quadrant events: Q4 motions clearly
dominate in the lower part of an equilibrium APG TBL con-
trary to the ZPG TBL where Q2 and Q4 motions are equally
important. In the upper half region, detached Q2s gain im-
portance and contribute more than attached Q2s. All types
of Q−s contribute significantly in the middle of the bound-
ary layer.

Figure 7 presents a comparison between the fraction
of the Reynolds shear stress carried by the various Qs in
the present flow and in channel flow. To simplify the read-
ing of the plots, Q1s and Q3s are grouped together, and so
are detached Q2s and Q4s. Q−s in the channel flow carry
more of the Reynolds shear stress than those in the present
flow. Less intenseuv motions therefore play a more im-
portant role in large-defect TBLs. The main reason for this
difference resides in the much smaller contribution of at-
tached Q2s in the present flow which is not compensated
by the increase in the contribution of detached Q−s. De-
tached Q2s and Q4s indeed play a more important role in the
present flow and they even become dominant above 0.5δ .
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Table 1. Number fraction with respect to total number ofQs, and volume fraction with respect to extraction zone volume
(Bx ×By ×Bz) for the four different types ofQs. Channel atReτ = 950 (LFJ).

Case N1 N2 N3 N4 V1 V2 V3 V4

Present (all) 0.24 0.28 0.20 0.28 0.003 0.024 0.004 0.015

Present (attached) 0.06 0.09 0.03 0.10 0.001 0.015 0.000 0.010

Channel (all) 0.18 0.33 0.19 0.31 0.004 0.056 0.006 0.025

Channel (attached) 0.02 0.15 0.006 0.13 0.000 0.047 0.000 0.015
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Figure 6. Fraction of the Reynolds shear stress atReθ =

2175 (H = 2.5) from attached Qs, solid, and detached Qs,
dashed. Q1, blue; Q2, red; Q3, black; Q4, green.
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Figure 7. Fraction of the Reynolds shear stress from: at-
tached Q2s, red; attached Q4s, green; detached Q−s, blue;
all Q+s, black. (a) present flow atReθ = 2175 (H = 2.5) ,
(b) channel flow atReτ = 950 of LFJ.
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Figure 8. Joint pdfsp(∆x/δa,∆y/δa) of the logarithms of
the sizes of the boxes circumscribing Q−s: (a) wall-attached
Q−s, (b) wall-detached Q−s. The straight dashed lines are
∆y = ∆x.

The amount of Reynolds shear stress they carry is higher
than that of similar structures in channel flow.

Figure 8 presents joint pdfs of the logarithms of the
streamwise and wall-normal sizes, normalized withδa, of
the boxes circumscribing Q2s and Q4s for attached (a) and
detached structures (b). Like in LFJ for turbulent channel
flows, the Q2 and the Q4 structures have similar sizes, with
Q2s slightly bigger. The detached structures are approx-
imately as long as they are tall and wide,∆x ≈ ∆y ≈ ∆z,
while attached Q−s tend to be more elongated in the stream-
wise direction, by a factor of almost 2 (∆x ≈ 2∆y ≈ 2∆z).
This elongation is however not as pronounced as in channel
flows, where LFJ found attached Q−s to be 3 times longer
than tall and wide for all sizes. In Krogstad & Skåre (1995),
Lee & Sung (2009) and Rahgozar & Maciel (2012), it was
also observed that above a certain height the length of the
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a and of the height∆y/δa for wall-attached Q−s. The
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u-structures becomes shorter in an APG flow in comparison
with a ZPG flow.

The largest structures are attached Q2s that can reach
∆x ≈ 3δa and ∆y ≈ ∆z ≈ 2δa. For channel flows, LFJ
found very long attached Q2s reaching∆x ≈ 20h and∆y ≈
∆z ≈ 2h. The rapid streamwise variations and strong non-
equilibrium state of the present APG TBL probably prohibit
the existence of such long motions. The detached Q−s are
globally smaller than their attached counterparts, but not
significantly. Detached Q−s whose center is in the range
0.2 < yc/δa < 0.6 have a distribution of dimensions (not
shown) similar to that of the ensemble of all detached Q−s.

Figure 9 shows the joint pdfs of the volumes and
heights of the attached Q2s and Q4s. The attached Q2s
and Q4s follow reasonably well the relationVQ ∝ ∆2.25

y pro-
posed by LFJ. They interpreted it as an estimate of the frac-
tal dimension of the structures but they also characterized
the shapes of the Qs by more direct methods. They showed
that the attached Q2s and Q4s found in channel flows resem-
ble sponges formed by the agglutination of flakes. Inspec-
tion of individual attached Q−s confirms that their shape is
similar in the present flow. Moreover, the large detached
Q−s have shapes similar to the attached ones.

CONCLUSIONS
Wall-attached and wall-detached Q− structures are

detected everywhere in the present large-defect boundary
layer. Wall-attached Q−s occupy less space and are much
less streamwise elongated than those found in turbulent
channel flows by LFJ. In channels, LFJ observed that the
detached Qs represent background fluctuations of small
size, of the order of a few Kolmogorov lengths, whose
contributions to the Reynolds shear stress almost cancel. In
the present flow, detached Q− structures are comparable in
size to attached Q−s and they carry a significant amount
of the Reynolds shear stress throughout the outer region.
In the zone of maximum turbulence intensity, Reynolds
shear stress and turbulent kinetic energy production of
the present flow, approximately 0.2 < y/δ < 0.6, 94% of
the Q−s are detached ones. Moreover, in that region, the
detached Q−s contribute as much to the Reynolds shear
stress as the attached ones.

stress as the attached ones.
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