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ABSTRACT
Coherent structures are tracked in three simulations

of massive-separated or turbulent flow. Topological sad-
dle points are found using intersections of the postive-
and negative-time Lagrangian coherent structures, and these
points are then followed as the flow evolves in order to track
individual structures. In the cases of a 2D flat plate under-
going a 45◦ pitch-up maneuver and a circular cylinder in
cross-flow, tracking saddle points showed a rapid acceler-
ation of the structure as it shed from the plate or cylinder
surface. For a simulation of wall-bounded turbulence in a
channel flow, tracking the LCS saddle points shows that av-
erage structure convection speed exhibits a similar trend as
a function of wall-normal distance as the mean velocity pro-
file.

INTRODUCTION
Coherent structures are a key component of unsteady

flows such as propulsive wakes, flow separation, and in-
stabilities in shear layers. They play a key role in fluid
mixing and instabilities, kinetic energy production and dis-
sipation, mass transport and diffusion, frictional drag, and
others. The visualization and tracking research of vortices
helps to explain the basic physics of turbulent motions, and
to improve turbulent flow modeling, prediction, and con-
trol design and implementation. Consequently, it can aid
in the design of high-lift devices, mixing progress in power
engines, or artificial adaption of biological flexible control
surfaces.

Although vortex research has been carried on for
decades, a widely-accepted, objective definition of a vor-
tex and its boundaries remains unrealized. Improvement of
experimental techniques has led to larger amounts of data,
requiring development of automated procedures for vortex
tracking (Chong et al., 1990). Many vortex criteria iden-
tify the structures by a a local swirling motion, which has
the presence of closed or spiral streamlines or pathlines in
a suitable reference frame. Graftieaux et al. (2001) initially
defined a scalar function Γ1 by using the topology of the
velocity field to yield the center of the vortex core. The
Q criterion, from Hunt et al. (1988), identifies regions as
vortices if the norm of the local rate of rotation tensor is
dominant over the norm of the local rate of strain.

Alternatively, Lagrangian coherent structures (LCS)
analysis is a Lagrangian method based on the quantities cal-
culated along fluid particle trajectories. LCS are identified

as maximizing ridges of the scalar finite-time Lyapunov ex-
ponent (FTLE), and these ridges have been shown to repre-
sent structure boundaries in vortex dominated flows (Haller,
2001, 2002). This calculation can be done in both positive-
and negative-time, yielding material lines boundaries that
either locally separate or repel trajectores (positive-time,
pLCS) or locally attract trajectories (negative-time, nLCS).

METHOD
Γ1

In the current work, coherent structures are tracked us-
ing Γ1, the Q criterion, and LCS. Graftieaux et al. ini-
tially defined the scalar function Γ1 by using the topology
of the velocity field to yield the center of the vortex core
(Graftieaux et al., 2001). The velocity field is sampled at
discrete spatial locations, and the Γ1 quantity is defined as,

Γ1(P) =
1
N

N

∑
i=1

(PM×UM) · z
||PM|| · ||UM ||

dA =
1
N

N

∑
i=1

sin(θM)dA, (1)

where A is a rectangular domain of fixed size and geometry,
centered on P, and M lies in S.

Here, N is the number of points M inside A, and z is
the unit vector normal to the measurement plane. θM is the
angle between the velocity vector UM and the radius vector
PM, and || · || represents the Euclidean norm of the vector.
The parameter N plays the role of a spatial filter, but only
weakly affects the location of the maximum Γ1. The lo-
cation is determined by local maximum, typically ranging
from 0.9 to 1 near the vortex center. The Γ1 function pro-
vides a simple and robust way to identify the locations of
centers of vortical structures. It is, however, not Galilean in-
variant, and therefore is dependent on the convection speed
of any structures of interest.

Q-criterion
Another Eulerian scalar, the Q criterion, identifies re-

gions as vortices if the norm of the local rate of rotation
tensor is dominant over the norm of the local rate of strain
(Hunt et al., 1988). The velocity gradient tensor ∇u is de-
composed into the symmetric rate of strain tensor S and an-
tisymmetric rate of rotation tensor Ω, as,

∇u = S+Ω, (2)
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where S = 1
2 [∇u+(∇u)T ] and Ω = 1

2 [∇u− (∇u)T ].
The Q criterion is then defined as,

Q =
1
2
[||Ω||2−||S||2]> 0. (3)

Here, ||Ω|| represents the Euclidean norm of the local rate
of rotation tensor and ||S|| represents the Euclidean norm of
the local rate of strain tensor S. A vortex is defined in those
regions where Q > 0, which is interpreted as a dominance
of rotation over strain.

A vortex core is found using the Q criterion in two
ways. In the case of the flat plate, we first identify a rectan-
gular area around the Γ1 core point that roughly bounds the
vortex. The center is then found as the “center of mass” of
Q in that rectangular region. This allows us to simultane-
ously consider the multiple vortices that are present in the
simulation. In the case of the circular cylinder, the point
of maxiumum Q in the region close the cylinder surface is
used.

Lagrangian coherent structures
Our method to identify Lagrangian coherent structures

uses the maximizing ridges of the scalar finite-time Lya-
punov exponent field (FTLE), as these ridges have been
shown to represent structure boundaries in vortex domi-
nated flows (Haller, 2001, 2002). The FTLE value measures
the maximum rate of separation around a certain location in
space (x0) by first calculating the flow map of neighboring
particles φ(x0, t0,T ) over an integration time T , and con-
structing the Cauchy-Green strain tensor from the spatial
gradient of the flow map. The maximum eigenvalue of the
Cauchy-Green strain tensor is referred to as the coefficient
of expansion σT .

σT (x0, t0) = λmax

([
∂φ(x0, t0,T )

∂x0

]T [∂φ(x0, t0,T )
∂x0

])
.

(4)
From there, the FTLE field is defined from the coefficient
of expansion as,

FT LET (x0, t0) =
1

2T
logσT (x0, t0). (5)

Maximizing ridges in this field indicate high levels of La-
grangian stretching among nearby particle trajectories.

This calculation can also be done by calculating parti-
cle trajectories initialized at t0 in negative-time. This cal-
culation will also yield a scalar FTLE field, and because it
measures Lagrangian separation in negative time, its ridges
represent those regions in the flow where particle trajec-
tories are currently being attracted. By including ridges
from both FTLE calculations, the analysis produces both
the repelling material lines along which particle trajecto-
ries locally separate from each other (positive-time, pLCS)
or attracting material lines along which particle trajectories
locally contract to each other (negative-time, nLCS). The
pLCS and nLCS intersect at the outer boundaries of vor-
tices but don’t overlap. Inclusion of both LCS provides a
more complete boundary delineating which particles are en-
trained into the vortex from those that continue to convect
with the outer flow.

To track vortex structures using the LCS, we use not
the full ridges of the FTLE fields, but those points where
the nLCS intersect with the pLCS. These intersections of
the attracting and repelling material lines in the flow are
effective saddle points, and have been shown to be dynam-
ically important features of the vortex boundaries (Green
et al., 2011).

RESULTS
2D plate in pitch-up maneuver

Leading edge and trailing edge vortex center tracking
is demonstrated on data from the simulation of a flat plate
undergoing a 45◦ pitch-up maneuver (Eldredge, 2007). Fig-
ure 1 shows an example of where each method identifies its
tracking target. This instant of time is well after the leading-
edge vortex has developed, and multiple vortices have shed
from the trailing edge. Both Γ1 cores (yellow dots) and
Q centers (green dots) locate the vortex centers in approx-
imately the same location. The green boxes illustrate the
region in which the center of Q was found, demonstrating
that a reasonably large area of the vortex was considered.
As described, the cyan dots locate the saddle points at the
intersections of the pLCS (blue) and nLCS (red).
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Figure 1. Instantaneous image of pLCS (blue), nLCS
(red), with contour level of values more than 85% maxi-
mum, and positive Q criterion (black) with contour level at
0 in the wake of the panel pitching up, with identified track-
ing markers labeled. Flat plate is plotted as purple line. A
green box is to mark the region where the center of Q was
found

Figure 2 shows the location of each of these tracking
targets in time (t∗ = tU∞/c), measured as distance from the
leading edge and scaled by the plate chord. From this figure,
we see that Q and Γ1 give very similar tracks of the vortex
core. The tracks of the LCS saddles, on the other hand,
appear to move with a different profile. As can be seen in
movies of the tracking center evolutions, some of this is be-
cause of the rotation of the structures as they evolve down-
stream, meaning that boundary of the structure (including
the saddle) will trace out a larger track than the vortex core.
A portion of the difference, however, also comes from the
fact that as the a structure grows, the core might shift down-
stream even as it remains attached to the plate. This piece
of information is available in the track of saddle “a,” which
is part of the boundary of the primary leading-edge vortex
that first forms and sheds. As shown in the cyan diamonds
in figure 2, the saddle moves away from the leading edge
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slowly, with a rapid acceleration around t∗ = 2.5. The two
relatively distinct phases of constant motion are highlighted
with red lines in figure 2. We propose that this rapid accel-
eration of the saddle points from structures with longer for-
mation times gives a good indication of the timing of vortex
shedding.
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Figure 2. Distance of tracking markers, measured from
the panel leading edge, in time. (Red lines indicate the rel-
ative slopes of saddle point a motions in time.)

Cylinder in cross-flow
A similar saddle track is observed in periodic vortex

shedding from a circular cylinder as described by Rock-
wood & Green (2014). These FTLE fields were gener-
ated using velocity data from a two-dimensional immersed
boundary simulation by Colonius & Taira (2008). The flow
maps were calculated using integration times of two shed-
ding periods (T ).

As seen in the top of figure 3, the FTLE ridges in this
flow are also intertwined in a system of interconnected sad-
dles. The intersection highlighted by the black arrow in that
figure is a saddle that resides on the cylinder surface while
the adjacent vortex structure continues to form. Approxi-
mately 0.4 T later, the saddle has departed from the cylinder
surface, as seen in the bottom image of figure 3.

Rockwood & Green (2014) tracked this saddle by hand
and showed that as the vortex is initially forming, it remains
stationary and attached to the cylinder surface. As the vor-
tex sheds, it abruptly accelerates from the cylinder surface.
This result is shown in figure 4. Here, the black lines give
an indication of the near-zero motion of the saddle at early
times in the vortex shedding period, while the structure is
still attached and forming. Near t/T = 0.8, the saddle ac-
celerates to a new constant velocity, which is the same as
the velocity of the vortex core point (as identified by Qmax),
and can be considered the vortex convection velocity. This
decomposition of the saddle motion into two phases of rel-
atively constant motion is similar to the pitch-up plate, as
shown by the red lines in figure 2.

Turbulent structure tracking
Similar saddle point tracking is used in the case of a

three-dimensional, fully turbulent channel simulation, gen-
erated using the method of Kim et al. (1987). FTLE fields
in this data were originally presented in Green et al. (2007).
Previous work identifies the saddles by hand, while current
work manages to detect and track them automatically from
processed FTLE data sets. Figure 5 shows flow in a 2D

Figure 3. Instantaneous snapshot of positive- and
negative-time LCS (blue and red, respectively) in the flow
around a circular cylinder (represented by a green circle).
Saddle point recently shed from the top half of the cylinder
is highlighted by a black arrow.

Figure 4. Distance of vortex from cylinder surface. Red
squares: distance from surface to vortex core, taken as point
of maximum Q criterion inside the vortex. Blue triangles:
distance from cylinder surface to LCS saddle. Black lines
indicate the relative slopes of the saddle motions in time.

plane cutting from turbulent channel at t∗ = 6000, where
time is nondimensionalized as, t+ = Tu2

τ/ν , with uτ as the
friction velocity, and ν as the kinematic velocity. Distance
from the wall is represented as y+ = uτ y/ν , and the location
of the plane of calculation in figure 5 is y+ = 49. The flow
map integration time is T+ = 27. Negative- and positive-
time LCS, are shown as red and blue curves, respectively,
and cyan dots locate the saddle points at the intersections of
the pLCS and nLCS.

The ridges of the FTLE field are codimension 1 struc-
tures, meaning that in two-dimensional flows, they are one-
dimensional curves. In the case of the turbulent channel,
which is three dimensional, the FTLE ridges will be two-
dimensional curved surfaces in space. In figure 5, although
the flow maps were only calculated in a single plane, they
were advected in the full three-dimensional data domain.
For this reason, the ridges in figure 5 can be considered the
intersection of the 2D surfaces of the LCS with this partic-
ular plane at y+ = 49. The saddles, which are the intersec-
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Figure 5. Instantaneous snapshots of positive- and
negative-time LCS (blue and red, respectively) in the tur-
bulent channel simulation. Saddle points are highlighted by
cyan circles.

tions of the LCS, are then naturally codimension 2, meaning
that they are zero-dimensional points in 2D flows, and one-
dimensional line segments in 3D flows. The saddle points
of figure 5 are then intersections of the saddle curves with
the 2D plane.
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Figure 6. Plane-averaged velocity of saddles points in the
turbulent channel simulation, plotted against wall-normal
distance (red). This data is compared with the simulation
mean streamwise velocity profile (blue).

FTLE ridges and saddles were identified for a series of

ten time-resolved snapshots, at 129 planes across the chan-
nel width. Using a cross-correlation algorithm, an aver-
age streamwise velocity of saddles at each plane was then
calculated, with dimensionless average tracking velocity
uc = u/uτ . In figure 6, this averaged structure convection
velocity, found by tracking the LCS saddles, is shown as
a function of wall-normal distance. For comparison, the
channel mean streamwise velocity ū is also included on
the same axes. The structure convection velocity uc is less
than the mean profile velocity ū for -0.914 < y/h < 0.924
(y+ < 15.5 and y+ < 13.7, respectively). This is shown
directly in figure 7, which shows the velocity deficit, calcu-
lated as, ∆u = (ū− uc)/ū. In the region where ū > uc, the
velocity deficit is on the order of 10% - 15%.
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Figure 7. Velocity deficit of saddles tracking velocity and
mean streamwise velocity in the turbulent channel simula-
tion, plotted against wall-normal distance.

Close to the wall, y+ < 15.5 or y+ < 13.7, the veloc-
ity of the coherent structures as identified by the LCS sad-
dles is larger than the channel mean profile velocity. While
this is consistent with the physical interpretation that coher-
ent structures will travel faster than the viscous-dominated
mean velocity close to the wall, the data in that region may
not be statistically converged. This is due to the thicker
FTLE ridges in the planes closer to the wall, which may be
a result on the flow map integration time. The longer times
used to capture the larger scale structures across the chan-
nel may be suitable for the smaller scale structures near the
wall. This will be addressed in future work.

SUMMARY
In all three applications, using the LCS saddles to track

the structures yields an objective point in space to target,
which enables us to start to develop automatic tracking al-
gorithms after the computation of the requisite FTLE fields.
In massively-separated flows such as leading edge vortex
separation on a flat plate pitching up or vortex shedding off
a circular cylinder, tracking the saddles allows for identifi-
cation of an acceleration that can indicate shedding of the
relevant vortex. In a turbulent channel simulation, tracking
the objective saddle points provides the possibility of auto-
matic tracking algorithm that will provide statistical quanti-
ties of coherent structure dynamics.
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