
Direct Numerical Simulation of Rapidly Distorting Compressible 
Homogeneous Turbulent Flow 

 

Shuang Tan, Qibing Li, Song Fu 
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China 

Email: lqb@tsinghua.edu.cn 
 

Abstract 
The gas-kinetic scheme is applied into the direct 

numerical simulation of rapidly distorting turbulence, 

to investigate the effects of mean flow compressibility 

on turbulence fluctuations. Different distortion Mach 

numbers are considered and the results show that as 

‘implicit effect’ (Simone et al., 1997), the 

redistribution relaxation process in the initial stage has 

great influences on flow field evolution. Compared 

with shear flows, mean flow compressibility has 

distinct ‘explicit effect’ on turbulence energy in strain 

flows. The priori estimate of three typical turbulence 

models for redistribution term shows that high order 

turbulence model is required for pressure-deviatoric 

term, and the compressibility corrections of 

pressure-dilatation part should also be carried out 

upon high order models. 

 

Introduction  
In turbulence model studies, the redistribution 

term has always been with great difficulty due to the 

modelling of fluctuating pressure, especially in 

compressible flows. Meanwhile, most published 

works focus on shear flows (Simone et al., 1997; 

Sarkar et al., 1991; Kumar et al., 2013). Flows 

dominated by strain have received much less attention 

and require more fundamental researches (Blaisdell et 

al., 1996, Cambon et al., 1993). In the studies of 

redistribution modelling, Rapid Distortion Theory 

(RDT) is commonly adopted (Pope, 2000). RDT is 

valid for the strain rate / 1Sk ε >> , so that the 

influence of the fluctuation velocity (nonlinear term) 

and dissipation term can be neglected. Thus only the 

rapid pressure-strain part is considered. The slow 

pressure-strain term related with the small scale 

turbulent fluctuations can be modelled by Rotta 

model. 

It is worth to be mentioned that RDT flow 

condition is not only an ideal model but also 

commonly exists in actual turbulent flows. Lee et al. 

(1990) has observed that /Sk ε  can reach a 

maximum value of 15-20 in incompressible channel 

flow. The value is even larger as 25 in our Ma=0.3 

compressible simulation, which reflects the specific 

effect on turbulent statistics of mean flow 

compressibility.  

Considering the limitations of the linearization 

in RDT, the direct numerical simulation (DNS) is 

adopted in this paper to analyze the compressibility 

effect on the redistribution term in plane stain flows, 

starting from homogeneous isotropic turbulent flows.  

 

Numerical Scheme  
The multidimensional gas-kinetic scheme (GKS) 

(Li & Fu, 2006; Xu, 2001) is adopted in the present 

study, which is based on the BGK equation,  

t x
g ff f
t
−

+ ⋅∇ =u  (1), 

Here the distribution function f is the only physical 

quantity need to be solved, g is the Maxwellian 

distribution. t  is the particle collision time which 

can be determined by / pt µ= . f has the analytical 

solution in form,  
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where ( )t t′ ′= − −x x u  is the particle trajectory and 

f0 is the initial distribution function at the beginning 

of each time step. The relevant macroscopic quantities 

including fluxes can be obtained by taking moments 

of f. As f is the function of time, by integral GKS can 

achieve high order accuracy both in space and time. In 

this paper, the 2nd order scheme is used. GKS can be 
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directly applied in the DNS of turbulence (Li et al., 

2003, Kumar et al. 2013). Combined with turbulence 

models, GKS can simulate high-Reynolds-number 

turbulent flows on RANS scale (Li et al., 2010, Tan et 

al., 2011). 

To simplify the boundary conditions to a 

periodic one, the moving mesh method is used with 

the coordinate transformation (Jin et al., 2010), 

,t t t= = +x x U  , and here U  is the given mean flow 

velocity, 

1.0
1.0

0
S

 
 = − 
  

S  

( ) ( )0 ijS ti
i ij j

j

xU t S x e
t

∂
= =
∂ ∑  

(3). 

The moving mesh leads to the requirement of 

large acceleration, and will result in significant loss of 

numerical accuracy if the acceleration is not 

considered in the evolution of f. In the present study, 

the GKS is improved, based on BGK equation with 

acceleration (Tian et al., 2007), 

t x u
g ff f f
t
−

+ ⋅∇ + ⋅∇ =u a  (4). 

The microscopic characteristic relation of gas 

molecule for Eq.(4) is replaced by,  

( ) ( )21
2

t t t t′ ′ ′= − − + −x x u a  (5). 

Thus the acceleration can be explicitly included in 

distribution function f and the fluxes at computational 

cell interface automatically contain the correction.  

The improved GKS is tested with the 

propagation of pressure perturbation in gravitational 

field. The initial pressure is perturbed as (Tian et al., 

2007),  

( )20
0( ,0) ( ) e x xp x p x αη −= +  (6). 

η=0.001 is the amplitude of the perturbation. Figure 1 

shows the results of original GKS and modified GKS 

(marked as GKS-impr). It can be easily observed that 

the improved GKS with source term effect considered 

in fluxes can accurately catch the influence of external 

force on small pressure perturbation. The accuracy of 

the modified scheme is further validated, and turns out 

to keep 2nd order.  
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(b) 

Figure 1  Propagation of the pressure perturbation in 

gravitational field. 

 

During the rapidly distorting of the flow, the 

flow field energy keeps growing due to the 

acceleration. Thus the time step is reduced until the 

accumulative error can be neglected. In this paper, the 

plane strain distortion is focused on and the strain rate 
is set as gS Ma a= ⋅ , where a is the initial sound 

speed and keep constant in different cases. For 

simplicity, the flow field is initialized with 

homogeneous isotropic turbulence with energy 

spectrum as (Blaisdell et al., 1996),  

2 2
02 /4( ) e k kE k Ak −=  (7). 

As the mean flow compression effect is mainly 

considered, the initial turbulence Mach number is set 

as 0.05 to reduce the turbulence compressibility. So 

the ‘pre-computation’ (Simone et al., 1997.) of 

thermal parameters in compressible flows is not 

necessary. The Reλ (defined on Taylor length) of 

initial field is 72 and the computational domain is 
32π  divided by 3128  grids. 

Two cases are computed firstly for validation, 

one is near incompressible (Mag=0.2) and the other is 

with very high Mach number (Mag=100). Here Mag is 

the gradient Mach number, defined by mean flow 

strain rate, unit length and sound speed 
/gMa S a= ∆  (simply called as Mach number unless 

otherwise specified). Figure 3 is the Reynolds stress 

results compared with spectrum method (Pope, 2000) 

and the asymptotic solution of Burger equation. 

Besides, the single Fourier mode in rapidly shear 

distorting flow (Kumar et al., 2013) has also been 



adopted to validate the scheme, which is not shown 

here.  
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(b) 

Figure 2  The evolution of the Reynolds stress for plane 

strain rapid distortion. (a): Mag=0.2; (b): Mag=100.) 

 

From Eq.(7), the prime timescale for initial 

pressure fluctuation is ( ) 1
0ak − . Two cases in Figure 2 

represent solenoidal flow and pressure-release flow, 

respectively, which show different flow mechanisms. 

At long distortion time, due to the exponentially 

accelerated eddy stretching in the expansion direction, 

the lower wave number fluctuations are generated, 

and affect the other directions by nonlinear process. 

The turbulence flow fields develop to pressure-release 

with respect to the mean flow distortion. Thus DNS 

simulation will diverge from RDT results at large 

distortion time. To extend the solenoidal flow stage 

analyzed in this paper, greater wave number of 

fluctuation (in refined grid) can be adopted, as the 
comparison between 0 8k =  and 0 16k =  in Figure 

2. Considering the computational cost, 0 8k =  is still 

chosen, with a little shorter distortion time for 

analysis.  

 

Results and Analysis 
In compressible RDT, there exist three 

characteristic time scales, which are mean flow field 
time scale dt , dissipation time scale tt  and 

compressibility time scale at . According to these 

scales, two Mach numbers can be defined, which is 
distortion Mach number /d a dM t t=  

( / 2d gM Ma=  in this paper), reflecting the mean 

flow compression effect on turbulent fluctuations and 
turbulence Mach number /t a tM t t= , the 

compressibility of turbulence. In this paper, the mean 

flow compressibility on solenoidal turbulent flows are 

studied, so the gradient Mach numbers are chosen 

from 0.2 to 1 with the same initial flow conditions.  

For compressibility ‘implicit effect’, the 

evolutions of anisotropy with different Mach number 

are shown in Figure 3. With the augmentation of 

compressibility, the anisotropic tensors gradually 

develop from two-component to one-component. 
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Figure 3  Flow fields anisotropy evolution with different 

gradient Mach number. 

 

The differences in anisotropy evolution mainly 

derive from the anisotropy distortion of initial 

homogeneous flow fields, so that the redistribution 

terms growing from zero. After enough distortion time, 

the redistribution terms will get balance with the flow 

anisotropy and the pressure-deviatoric ratio R1 

(defined in following) will enter the plateau stage as 

in Figure 4. In the present study, this initial adjustment 

is simply called the redistribution relaxation. As the 

initial sound speed is constant and the strain rates is 

related with Mach number in the computations, the 

timescale ratio of mean flow field and turbulence 



varies with Mach number. When the dimensionless 

distortion times are transformed to the same strain rate, 

the redistribution relaxation process can be 

normalized and the plateau stage can be easily chosen 

with different Mach number in the following data 

analysis. Besides, the results show that the mean flow 

compressibility inhibits the redistribution growth in 

the redistribution relaxation stage. 
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Figure 4  R1 with different Mach number. 

 

For further analysis, the redistribution tensor 

ijΦ  is decomposed into pressure-dilatation and 

pressure-deviatoric parts as (Gatski et al., 2013), 

2
3

d
ij ij ijρ ρ d ρΦ = Φ + Φ  (8). 

As pressure-deviatoric part no longer contains 

explicit compression effect, modelling of this part is 

expected to be similar with incompressible case. The 

ratio of pressure-deviatoric tensor to production tensor 

is defined as, 

1

d d
ij ij

ij ij

R
P P
Φ Φ

=  (9). 

In linear model (LRR, SSG etc.), the ratio is a 

constant 0.36. In compressible flows, variation of the 

ratio against St/Mag
 is as Figure 4. Deducting the 

section influenced by redistribution relaxation and 

lower wavenumber fluctuations produced by 

nonlinear mechanism, the averaged value of R1 
between 0.9 / 1.3gSt Ma≤ ≤ for different Mach 

number is shown in Figure 5. An interesting increase 

with Mach number is found, from about 3% for Mag = 

0.2 to 10% for Mag = 1. 
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Figure 5  Averaged value of R1 with Mach number.  

 

Considering the different anisotropy at the 

beginning of plateau stage with different Mach 

number due to the redistribution relaxation, the 

deviation of R1 from linear models may come from 

the nonlinear terms. This is clarified with the help of a 

cubic quasi-isotropic turbulence model for 

pressure-deviatoric term, FLT (Fu et al., 1987), which 

was further modified by Huang et al. (2008) to 

simulate plane strain flows. An a priori estimate is 

carried out based on the present DNS data. The 

difference is measured by 1
ER , which is defined as,  

( )( )* *

1

d FLT d FLT
ij ij ij ijE

ij ij

R
P P

Φ −Φ Φ −Φ
=  (10). 

The averaged value against Mach number is shown in 

Figure 6. The minor value of 1
ER  means that 

compressibility ‘implicit effect’ can be neglected with 

FLT model for the present moderate Mach numbers. 

The high order incompressible redistribution model 

can be used to simulate pressure-deviatoric part 

directly.  
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Figure 6  Averaged value of 1
ER  with Mach number. 

 

For the pressure-dilatation part called 



compressibility ‘explicit effect’, the evolution 

equation of the turbulent kinetic energy is, 

DK P
Dt

ρ ρ ρ= + Φ  (11). 

In Eq.(11), pressure-dilatation part plays as 

dissipation role for turbulent kinetic energy. The ratio 

of pressure-dilatation term to production term is 

defined as, 

PK
PΦ

Φ
= , (12) 

which is used to measure the effect of 

pressure-dilatation under different Mach number, as 
shown in Figure 7. The averaged value of PKΦ  in 

the plateau stage with Mach number is presented in 

Figure 8. In shear flow studies, pressure-dilatation 

part is associated with turbulence Mach number, 

which represents small scale turbulent compressibility 

(Sarkar, 1992). The result in Figure 8 reflects that 

pressure-dilatation part in strain flow shows distinct 

explicit compression effect related with mean flow 

compressibility, which is approximately linear with 

mean flow Mach number.  
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Figure 7  PKΦ  with different Mach number. 
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Figure 8  Averaged value of PKΦ  against Mach number. 

 

Based on the near incompressible plane strain 

distortion case (Mag=0.2), three typical redistribution 

models are estimated: the linear LRR-IP, SSG model 

and modified cubic quasi-isotropic FLT model. Figure 

9 is the result of Reynolds-stress invariants from 

different models. Recalling Figure 5 and Figure 6, 

despite that linear model can well predict the 

contraction of redistribution tensor in near 

incompressible cases, the component prediction need 

high order model. In compressible cases, the higher 

order terms get dominant in the model, and cannot be 

neglected even in the contraction of redistribution 

tensor. So the compressible model must be developed 

upon high order model. 
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Figure 9  Reynolds-stress invariants of turbulence model 

and DNS. 

  

The preliminary studies on high Mach number 

rapidly distorting turbulence have also been conducted. 

The results show great differences with current 

moderate Mach number results. The mean flows 

compressibility has stronger effects on turbulence. 

Further studies will be carried out. 

 

Conclusions 
Based on DNS of rapid plane strain distortion 

flows under different Mach numbers, this paper 

mainly focuses on the compressibility effect on the 

redistribution term. In strain dominated flows, high 

order turbulence model is required for 

pressure-deviatoric term, and suppression effects of 

the initial redistribution relaxation process cannot be 

ignored. The correction of pressure-dilatation part 

should be related with mean flow Mach number. 
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