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ABSTRACT
The Lagrangian and Eulerian acceleration statistics

in homogeneous turbulence with uniform shear and sta-
ble stratification are studied using direct numerical simu-
lations. The Richardson number is varied from Ri = 0,
corresponding to unstratified shear flow, to Ri = 1, corre-
sponding to strongly stratified shear flow. The probability
density functions (pdfs) of both Lagrangian and Eulerian
accelerations show a strong and similar influence on the
Richardson number and extreme values for Eulerian accel-
eration are stronger than those observed for the Lagrangian
acceleration. A consideration of the terms in the Navier-
Stokes equation shows that the Lagrangian acceleration is
mainly determined by the pressure-gradient, while the Eule-
rian acceleration is dominated by the nonlinear term. Simi-
larly, the Eulerian time-rate of change of fluctuating density
is observed to have larger extreme values than that of the
Lagrangian time-rate of change due to the nonlinear term
in the advection-diffusion equation for fluctuating density.
Hence, the time-rate of change of fluctuating density ob-
tained at a fixed location by an Eulerian observer is mainly
due to advection of fluctuating density through this loca-
tion, while the time-rate of change of fluctuating density
following a fluid particle is substantially smaller, and due to
production and dissipation of fluctuating density.

INTRODUCTION
An understanding of the Lagrangian acceleration prop-

erties of a fluid particle in turbulent flows is of fundamental
importance. After early work by Heisenberg (1948) and
Yaglom (1949), recent studies range from theoretical in-
vestigations (e.g. Tsinober, 2001) to applications such as
the modeling of particle dispersion (e.g. Pope, 1994). This
work is carried out using both experimental (e.g. La Porta
et al., 2001) as well as computational (e.g. Yeung, 2002;
Toschi & Bodenschatz, 2009) approaches.

The majority of previous investigations focused on La-
grangian properties of isotropic turbulence. The Lagrangian

acceleration was found to be strongly intermittent and heavy
tails were observed in its pdf. For example, extreme val-
ues as high as 1,500 times the acceleration of gravity were
observed for the Lagrangian acceleration of fluid particles
(La Porta et al., 2001) and numerical simulations confirmed
these results (Toschi & Bodenschatz, 2009).

Many applications of Lagrangian dynamics target the
transport and mixing of natural and anthropogenic sub-
stances in the geophysical environment. Such flows are of-
ten characterized by the presence of shear and stratification.
Homogeneous turbulent stratified shear flow with constant
vertical stratification rate Sρ = ∂ρ/∂y and constant vertical
shear rate S = ∂U/∂y represents the simplest flow configu-
ration in order to study the competing effects of shear and
stratification. This flow has been investigated extensively in
the past: Experimental studies include Komori et al. (1983),
Rohr et al. (1988), Piccirillo & Van Atta (1997), and Keller
& Van Atta (2000). Numerical simulations include the work
by Gerz et al. (1989), Holt et al. (1992), Jacobitz et al.
(1997), and Jacobitz (2002).

The goal of this work is to investigate the acceleration
statistics in turbulent stratified shear flows using direct nu-
merical simulations. In the following, the numerical ap-
proach taken is introduced first. Then, the Richardson num-
ber dependence of the Lagrangian and Eulerian acceleration
pdfs are presented, followed by a discussion of the corre-
sponding Lagrangian and Eulerian time-rate of change pdfs
for the density field.

APPROACH
The mean flow considered in this study has a constant

vertical shear rate S and a constant vertical stratification rate
Sρ :

U = Sy, V =W = 0, ρ = ρ0 +Sρ y (1)
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Figure 1. Evolution of the turbulent kinetic energy (left) and potential energy (right).

This study is based on the incompressible Navier-Stokes
equations for the fluctuating velocity and an advection-
diffusion equation for the fluctuating density:

∇ ·uuu = 0 (2)

∂uuu
∂ t

+uuu ·∇uuu+Sy
∂uuu
∂x

+Sveeex

=− 1
ρ0

∇p− g
ρ0

ρeeey +ν∇2uuu (3)

∂ρ
∂ t

+uuu ·∇ρ +Sρ v = α∇2ρ (4)

Here, uuu is the fluctuating velocity, p the fluctuating pressure,
ρ the fluctuating density, ν the viscosity, and α the scalar
diffusion. The equations of motion are transformed into a
frame of reference moving with the mean velocity (Rogallo,
1981). This transformation enables the application of peri-
odic boundary conditions for the fluctuating components of
velocity and a spectral collocation method is used for the
spatial discretization. The solution is advanced in time with
a fourth-order Runge-Kutta scheme.

The simulations are performed on a parallel computer
using 256×256×256 grid points. Both the mean shear rate
S = ∂U/∂y and the mean stratification rate Sρ = ∂ρ/∂y
are constant. The primary non-dimensional parameter, the
Richardson number Ri = N2/S2, where N is the Brunt-
Väisälä frequency with N2 =−g/ρ0Sρ , is varied from Ri =
0, corresponding to unstratified shear flow, to Ri = 1, corre-
sponding to strongly stratified shear flow. The initial condi-
tions are taken from a separate simulation of isotropic turbu-
lence without density fluctuations, which was allowed to de-
velop for approximately one eddy turnover time. The initial
values of the Taylor-microscale Reynolds number Reλ = 56
and the shear number SK/ε = 2 are fixed.

RESULTS
In this section, the flow evolution, Lagrangian and Eu-

lerian accelerations, as well as Lagrangian and Eulerian
time-rates of change of the density are discussed.

Turbulence Evolution
In order to provide a context for the present study, the

energetics of the flow is briefly discussed. Details can be
found in Jacobitz et al. (1997) and Jacobitz (2002). Figure 1
(left) shows the evolution of the turbulent kinetic energy K.
As the Richardson number Ri is increased, the evolution of
the turbulent kinetic energy changes from growth to decay
at a critical value of Ricr ≈ 0.15.

The potential energy Kρ is defined as:

Kρ =
1
2

g
Sρ ρ0

ρ2 (5)

Figure 1 (right) shows that the potential energy initially
grows due to an increasing stratification rate with increas-
ing Ri. Eventually, however, the decay of K also affects the
evolution of Kρ for large Richardson numbers.

Lagrangian and Eulerian Accelerations
The Lagrangian and Eulerian accelerations are defined

as

aaaL =
∂uuu
∂ t

+uuu ·∇uuu and aaaE =
∂uuu
∂ t

, (6)

respectively. This definition of the Lagrangian acceleration
implies the perspective of an observer traveling with a fluid
particle and the effects of shear and stratification are con-
sidered to be external forces. In the following, the accelera-
tions are analyzed at time instant St = 5.

Figure 2 shows the probability distribution functions
(pdfs) of the Lagrangian acceleration aaaL (left) and of the
Eulerian acceleration aaaE (right). The pdfs of both accel-
erations have stretched-exponential shapes and they exhibit
a strong and similar influence on the Richardson number
Ri. Figure 3 shows the normalized pdfs of the two accel-
erations. For a core region of about three standard devia-
tions, both the Lagrangian and Eulerian accelerations show
approximately the same shape. The tails of the pdfs of both
accelerations were observed to be heavier for smaller Ri and
the extreme values of the Eulerian acceleration are above
those of the Lagrangian acceleration, which is consistent
with previous observations for sheared and rotating turbu-
lence (Jacobitz et al., 2013).
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Figure 2. Pdfs of Lagrangian acceleration aaaL (left) and Eulerian acceleration aaaE (right).
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Figure 3. Normalized pdfs of Lagrangian acceleration aaaL (left) and Eulerian acceleration aaaE (right).
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Figure 4. Variation of the variance (left) and flatness (right) of the Lagrangian and Eulerian accelerations with Richardson
number Ri.

The variance of the acceleration pdfs are shown in fig-
ure 4 (left). The variance of both accelerations decrease
with increasing Ri and the variance of aaaE remains always
larger than the variance of aaaL. The heavier tails observed for
the pdf of aaaE as compared to aaaL results in a larger flatness of
the Eulerian acceleration pdf as compared to its Lagrangian
counterpart. Again, both flatness values decrease with in-
creasing Ri, indicating a decreased importance of nonlinear
effects.

Figure 5 shows pdfs of the shear term (top, left), the

buoyancy term (top, right), the pressure-gradient term (bot-
tom, left), and the nonlinear term (bottom, right) in the
Navier-Stokes equations. The shear and buoyancy terms de-
pend linearly on velocity components and density and their
pdfs have hence a Gaussian shape. While the variance of the
shear term pdf decreases with increasing Ri, the variance of
the buoyancy term pdf increases. The pdfs of the pressure-
gradient and nonlinear terms show a stretched-exponential
shape due to the quadratic nature of the terms. The vari-
ances of both terms decrease with increasing Ri. For small
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Figure 5. Pdfs of the shear (top, left), buoyancy (top, right), pressure-gradient (bottom, left), and nonlinear (bottom, right)
terms in the Navier-Stokes equations.

Ri, the pressure-gradient a nonlinear terms clearly dominate
the shear and buoyancy terms, but this dominance some-
what diminishes with increasing Ri. Hence, the pressure-
gradient term is the generally dominant contribution to the
Lagrangian acceleration, while the nonlinear term is impor-
tant for the Eulerian acceleration.

Lagrangian and Eulerian Time-Rates of
Change

The time-rates of change of fluctuating density can also
be defined using Lagrangian and Eulerian approaches as

sL =
∂ρ
∂ t

+uuu ·∇ρ and sE =
∂ρ
∂ t

, (7)

respectively. Figure 6 shows the pdfs of the Lagrangian
time-rate of change of fluctuating density (left) and of the
Eulerian time-rate of change (right). The difference in
the pdfs of the time-rates of change is more pronounced
than the difference obtained for the accelerations. Figure 7
shows the normalized pdfs of the two time-rates of change.
While the shape of the Eulerian time-rate of change pdf
is again found to be stretched-exponential, the Lagrangian
time-rate of change pdf has an almost Gaussian shape. The
extreme values of the Eulerian time-rate of change of fluc-
tuating density are substantially larger than those of the La-
grangian time-rate of change.

Figure 8 (left) shows the dependence of the variance of
the time-rate of change pdfs on the Richardson number Ri.

Note that for Ri = 0, the density is a passive scalar (zero
gravity) with a mean gradient. For the buoyant cases with
Ri > 0, the variance of both time-rates of change increases
with Ri and the variance of sE remains larger than that of
sL, consistent with the finding of the accelerations.

The flatness of the time-rates of change is shown in
figure 8 (right). The flatness of sE is always larger than that
of sL. While the flatness of sE decreases with increasing Ri,
the flatness of sL always remains close to three, indicating a
Gaussian distribution.

Figure 9 shows pdfs of the buoyancy term (left) and
nonlinear term (right) in the advection-diffusion equation
for fluctuating density. The buoyancy term pdf has a Gaus-
sian shape as it is linearly related to the fluctuating density.
Its variance increases with increasing Ri, because the strati-
fication rate Sρ increases.

The large difference observed between the Lagrangian
and Eulerian time-rates of change of fluctuating density is
due to the nonlinear term in the advection-diffusion equa-
tion and it is hence related to advection of fluctuating den-
sity. In other words, the time-rate of change of fluctuat-
ing density obtained at a fixed location by an Eulerian ob-
server is mainly due to advection of density through this
location, while the time-rate of change of fluctuating den-
sity observed by a Lagrangian observer following a fluid
particle is substantially smaller and due to production and
dissipation of fluctuating density.
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Figure 6. Pdfs of Lagrangian time-rate of change of fluctuating density sL (left) and Eulerian time-rate of change sE (right).
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Figure 7. Normalized pdfs of Lagrangian time-rate of change of fluctuating density sL (left) and Eulerian time-rate of change
sE (right).
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Figure 8. Variation of the variance (left) and flatness (right) of the Lagrangian and Eulerian time-rates of change with Richard-
son number Ri.

CONCLUSIONS

Direct numerical simulations were performed in order
to study the Lagrangian and Eulerian acceleration proper-
ties in stably stratified turbulent shear flows. With increas-
ing Richardson number Ri, the evolution of the turbulent ki-
netic energy K changes from growth to decay and the vari-
ances of aaaL and aaaE decrease. The acceleration pdfs were
observed to have a stretched-exponential symmetric shape
and the flatness decreases with increasing Ri.

The pdfs of the pressure-gradient and nonlinear terms
in the Navier-Stokes equation, which are both quadratic
terms, also have stretched-exponential shapes. The La-
grangian and Eulerian accelerations are mainly determined
by the pressure-gradient and the nonlinear terms, respec-
tively. While the quadratic terms are dominant for small
Ri, their dominance is somewhat diminished for large Ri.
The pdfs of the shear and buoyancy terms in the Navier-
Stokes equation, which are both linear terms, were observed
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Figure 9. Pdfs of the buoyancy (left) and nonlinear (right) terms in the advection-diffusion equation for fluctuating density.

to have a Gaussian shape. While the variance of the shear
term decreases with Ri, the variance of the buoyancy term
increases with Ri.

In addition, the Lagrangian and Eulerian time-rates
of change of density are considered. Due to a lack of
a quadratic term on the right-hand-side of the advection-
diffusion equation for density, the pdf of the Lagragian
time-rate of change has an almost Gaussian shape, while
the pdf of the Eulerian time-rate of change was observed to
have exponential to stretched-exponential shapes. The in-
creased dominance of linear terms for strong stratification
suggests that linear theory can accurately describe proper-
ties of such flows (e.g. Salhi et al., 2014).
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