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INTRODUCTION
Grid turbulence decay is among the main research top-

ics in turbulence theory. This topic has received a large at-
tention since the beginning of the 20th century. Most of the
existing works deal with the analysis of self-similar and/or
self-preserving solutions, which exhibits an algebraic decay
law for turbulent kinetic energy. The identification of the
parameters that govern the decay exponent of decay energy
is still an active field of research.

More recently, grid turbulence decay has been re-
newed by considering new grid topologies, namely frac-
tal/multiscale grids, which have been reported by some au-
thors to lead to decay regimes that escape classical theo-
ries for isotropic turbulence decay, e.g. Hurst & Vassili-
cos (2007); Valente & Vassilicos (2011). These possibly
new decay regimes still raise some controversies. While
some authors claim to observe the exponential decay law
predicted by George’s theory, other authors report unusu-
ally fast algebraic decay regime. Some groups also do not
observe unusual decay, only classical decay regimes. Some
researchers have also hypothesized that unusual decay law
originate in a breakdown of isotropy and homogeneity, and
should be considered as artifacts.

The present study aims at providing new elements re-
lated to the possible occurrence of unusual decay regime
due to fractal/multiscale production mechanisms. To this
end, a spectral model based on EDQNM-closed Lin equa-
tion is developed, in which turbulence production in the
fractal grid wake is mimicked by an isotropic forcing term.
The time evolution of the forcing term is derived from self-
similar wake elements, and it accounts in a Lagragian way
for the downstream evolution of the grid wake. In this way,
pure turbulence production effects are isolated from pos-
sible anisotropic or inhomogeneous effects, leading to an
deep insight into flow physics. All details can be found in
Meldi et al. (2014).

PHYSICAL MODEL
The present physical model is an extended Lin equa-

tion for time evolution of the 3D energy spectrum E(k)
with a forcing term that accounts for turbulent kinetic en-
ergy production due to the fractal wake induced shear down-
stream the grid :

∂E(k, t)
∂ t

+2ν k2 E(k, t) = T (k, t)+ 〈F (k, t)〉 (1)

The forcing term is based on the assumption that the
fractal kinetic energy production is isotropic. Therefore,
the present study enables for a clear separation between
multiscale/fractal production effects and the influence of
anisotropy/inhomogeneity.

The model introduced for spectral HIT DNS proposed
by Mazzi & Vassilicos (2004) is used as a starting point.
This empirical model represents the effects of fractal grids
in HIT grid experiments and, as a consequence, can be de-
fined as a fractal forcing:

P · F̂(k, t) = (kLγ )
β ak f e(k, t) (2)

where P is the projector on the plane normal to k,
F̂(k, t) is the Fourier transform of the physical forcing term,
Lγ is the largest scale forced, f is a scalar function and
e(k, t) is a unit vector. The coefficient ak ∈ I = [0; 1] is
1 for the forced modes and 0 for the other modes. The frac-
tal dimension of the grid is related to the grid geometry. The
parameter β represents a scaling exponent which is related
to the pattern of the multi-scale grid. Typical values consid-
ered in Mazzi & Vassilicos (2004) are β = 0.1−0.7.

The resulting energy input rate spectrum using the
model in equation 2 is:

F (k) =
1
2 ∑

S(k)
[(P · F̂) · û∗+(P · F̂)∗ · û] (3)

where the sum is over shells of radius k in the wavevec-
tor space and ∗ indicates the complex conjugate. Following
Mazzi & Vassilicos (2004) work, the expression of F (k)
can be manipulated observing that e(k, t) can be defined as:

e(k, t) = γR
û(k, t)
|û(k, t)| + γI

k∧ û(k, t)
|k ‖ û(k, t)| (4)

where γR and γI are a purely real coefficient and a
purely imaginary coefficient, respectively. Equation 4 al-
lows to express the forcing term P · F̂(k, t) as a function of
the velocity field only. Choosing f γI = i f γR the model
reads as:

P · F̂(k, t) = (k Lb)
β ak f γR

[
û(k, t)
|û(k, t)| + i

k∧ û(k, t)
|k ‖ û(k, t)|

]
(5)
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Equation 5 and the condition e(k, t) ‖ û(k, t) can be
used to simplify the expression for the energy input rate
spectrum F (k). Considering that in isotropic turbulence
û∗(k, t) = û(−k, t):

F (k) = f γR (k Lb)
β ak ∑

S(k)

û(k, t) · û(k, t)
|û(k, t)| (6)

In the following, we consider the ensemble average of
the energy input rate spectrum in Equation 6:

〈F (k)〉= f γR (k Lb)
β ak ∑

S(k)

〈 û(k, t) · û(k, t)〉√
〈 û(k, t) · û(k, t)〉

(7)

this term can be implemented in the Lin equation 1, in
order to study the effects of a fractal forcing over the time
evolution of the turbulence statistical quantities. The term
〈 û(k, t) · û(k, t)〉 can be derived by the theory of isotropic
turbulence:

〈 ûi(k′, t) · û j(k, t ′)〉= Ûi j(k, t, t ′)δ (k+k′) (8)

where Ûi j is the spectral tensor. This tensor is hermi-
tian and, in the case t = t ′:

Ûii(k, t, t) = Û(k, t) =
E(k, t)
2πk2 (9)

Û(k, t) is the trace (real and positive) of the spectral
tensor. Equation 9 allows for deriving an explicit expression
of 〈F (k)〉 as a function of the energy spectrum:

〈F (k)〉= 2 f γR (k Lb)
β ak k

√
2π E(k, t) (10)

The model constant 2 f γR is set so that the energy in-
put rate associated to the fractal forcing is balanced by the
energy dissipation rate ε(t).

The model in Equation 10 allows for the study of sta-
tistically steady forced isotropic turbulence. Therefore, it
must be modified to describe turbulence decay, which is as-
sociated to a decay of the turbulence production due to the
spreading of the wakes and the induced decrease of their
shear. This is done interpreting the present spectral descrip-
tion in a Lagrangian way, using a self-similar wake model
to describe each bar wake and neglecting their interactions.
The latter point is not a fundamental problem here, since
homogeneity and isotropy are enforced thanks to the use of
Lin’s equation. The model is designed to recover a phys-
ically meaningful description of the decay that occurs at a
distance larger than the interaction length downstream of
the grid. The interaction length is the distance needed for
all the wakes to have interacted in wind tunnel experiments,
which is reminiscent of the classical formation region in
regular grid experiments. In the present case, it is assumed

Figure 1: Simplified scheme representing the gener-
ation of multi-scale turbulence, in HIT grid experi-
ments.

that, downstream of the interaction length, the velocity field
is influenced by all wakes at all locations in the wind tunnel.

The present schematic physical model for the multi-
scale/fractal grid wake is displayed in Figure 1.

Self-similarity assumption and dimensional analysis
for planar wake analysis yield :

δ ∝ (t− τ)1/2, U ∝ (t− τ)−1/2, uv ∝ (t− τ)−1

(11)
where U , δ and τ are the wake velocity deficit ampli-

tude, the wake thickness and the time virtual origin, respec-
tively.

The decay law of the model should be consistent with
the Taylor frozen turbulence hypothesis.This hypothesis
must be considered as an approximation, as it is not com-
pletely fulfilled in grid turbulence experiments. Neverthe-
less, it allows for a direct comparison between the EDQNM
time evolution and the experiment’s spatial evolution. This
is done connecting the virtual time origin τ of the present
model with the wake interaction length scale x introduced
in a number of experimental works by the Imperial college
group (Mazellier & Vassilicos, 2010; Valente & Vassilicos,
2011; Gomes-Fernandes et al., 2012). Clearly, EDQNM re-
sults for times smaller than τ cannot be compared with ex-
perimental results, because of the strong anisotropy in the
near grid flow field region. The grid turbulence physical
dynamics through which the fractal isotropic turbulence is
reached at x are completely different from the numerical
steady model used to attain the EDQNM fractal converged
initial state for t < τ .

The turbulence production associated to a single wake
is evaluated as

T P =
dU
dy

uv ∝
U
δ

uv ∝ (t− τ)−2 (12)

Here, the characteristic time unit tG for t is d/U∞, with
d the bar diameter and U∞ the upstream velocity. Therefore,
at mode k, the decay law for turbulence production can be
written as

T P(k, t) ∝ (1+α kLγ (t− τ))−2 (13)

where Lγ denotes the largest scale at which forcing oc-
curs, which is approximated as the diameter of the largest
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bar in the grid. The parameter α is the ratio between the
characteristic grid time tG and the initial turbulent turnover
time t0:

α =
tG
t0

=
d

U∞

ε(0)
K (0)

=
d

L(0)

√
K (0)
U∞

(14)

The parameter α can be thought of as the ratio between
two characteristic lengths and two characteristic velocities.
The ratio

√
K (0)/U∞ is related to the wind tunnel features

and can be easily measured and quantified. On the other
hand, the ratio d/L(0) governs the relationship between
the turbulent flow evolution and the perturbation due to the
multi-scale grid. If d/L(0)� 1, the initial turnover time
will be very large with respect to the grid time, so that the
turbulent flow dynamics will be almost static with respect
to the multi-scale grid effects. Conversely, for progressively
larger values of d/L(0), the two dynamic effects will have
similar evolution times. In the limit of d/L(0)→ +∞, the
forcing term effects will decay fast after the time τ , and a
HIT free decay regime from an initial multi-scale grid spec-
trum will be triggered.

The resulting multi-scale/fractal forcing term, which is
obtained combining Eqs. 10 and 13, is:

F(k, t)=

{
2(k Lb)

β ak k
√

2π E(k, t) , t ≤ τ
2(k Lb)

β ak k
√

2π E(k, t) (1+α kLγ (t− τ))−2 , t ≥ τ
(15)

where Lγ is the largest scale forced. The coefficient
ak ∈ I = [0; 1] is 1 for the forced modes and 0 for the other
modes. The fractal dimension of the grid is related to the
grid geometry. The parameter β represents a scaling expo-
nent which is related to the pattern of the multi-scale grid.
Typical values considered in Mazzi & Vassilicos (2004) are

β = 0.1−0.7. The parameter α = d
U∞

ε(0)
K (0) =

d
L(0)

√
K (0)
U∞

(with d the bar diameter and U∞ the upstream uniform ve-
locity) measures the ratio of the timescale largest grid bar
d/U∞ to the turbulent time scale K (0)/ε(0). It is related
to the grid topology. The exponent −2 in the decay law
for turbulent production directly stems from the self-similar
planar wake theory, which is assumed to be relevant to de-
scribe rod wake dynamics downstream the fractal grid. The
steady forcing for t < τ is used to obtain an initial solution
which inherits some features from turbulence generation in
the formation region in wind tunnels. Therefore, the time
τ , which is interpreted as the virtual time origin for the de-
cay, is related to the wake interaction length as defined in
wind tunnels, e.g. Mazellier & Vassilicos (2010); Valente
& Vassilicos (2011).

RESULTS AND MAIN CONCLUSIONS
A systematic study of the influence of all parameters

has been conducted, along with a comparison with available
experimental data. A good agreement is observed with the
later (see figure 2). Typical results are illustrated in figure
3.

The main conclusions are (i) the key parameter that
governs the nature of turbulence decay is α and (ii) sev-
eral decay regimes can be observed. The 3 regimes are:
Present results display some anomalous decay regimes over

finite times before recovering algebraic decay laws, dur-
ing which the classical behaviour predicted by the Comte-
Bellot – Corrsin theory does not hold. Similar observations
were reported in many experimental investigations. But an
open issue is to know if these anomalous decay regimes
are associated either with very fast algebraic decay laws or
exponential decay laws. To investigate this problem, the
computed time evolution of kinetic energy is approximated
at every time step by the power-law relation K (t) ∝ tnK

where the time evolution of the power-law exponent nK (t)
is now a function of time. A careful examination of present
results yields the identification of three regimes, governed
by the value of α:

Rapidly decaying production term (α > 10−2). For
such cases, decay exponents nK (t)<−2 are observed
during a short transient period, which is consistent
with Valente & Vassilicos (2011) and Hearst & Lavoie
(2014), who reported nK ∼ −2,5 and nK ∼ −2,79,
respectively. It is worth reminding that the lower bound
compatible with the Comte-Bellot – Corrsin analysis
is nK = −10/7. In this regime, the production term
vanishes very quickly and has no significant influence
on the turbulence decay. Additional runs were carried
out with the same initial condition (i.e. applying the
steady forcing term for t < τ) but completely removing
the forcing term for t ≥ τ , in which the same transient
period with anomalous decay was observed, showing
that these anomalous fast decay regimes may be gov-
erned by the unusual shape of the energy spectrum that
can be produced by the fractal forcing. During these
fast decay regimes, the expected features of the expo-
nential decay are not observed, i.e. L/λ 6= const and
Cε 6= Re−1

λ .
Very slowly decaying production term (α < 10−3).
Here, the decay of turbulence appears to be driven by
the decay of the production term, and an exponential
decay in good agreement with George’s prediction is
observed. But it is worth noting that the local approxi-
mation of such decay regimes via local algebraic laws
leads to the definition of very slow decay rate over fi-
nite time, with 0 < nK ≤−1.
Intermediary decay regimes, in which no clear trend
can be identified.

The global picture can be further complexified ac-
counting for the intensity of the production effect. Here,
finite Reynolds number effects are excluded. For very high
and very low α values a governing dynamic effect can be
isolated. In this case, Cε = const. On the other hand, for in-
termediate values of α the turbulence production effects are
not sufficiently strong to completely drive the turbulence
dynamics, but yet they are not small enough to be over-
whelmed by dissipation. This results in a time evolution
of Cε , which appears to be α dependent and not far from
the Cε ∝ Re−1

λ observed by Valente & Vassilicos (2011).
This is a clear confirmation that the states Cε = const and
Cε ∝ Re−1

λ should not be automatically associated with clas-
sical grid turbulence and fractal grid turbulence, respec-
tively. Summarising, these modified decay laws are related
to production effects related to the geometry of the grid.
The characteristic evolution times of these effects are as
well governed by the grid topology and they can actually
be significantly longer than most physically observable tur-
bulent flow evolution times. For infinite times, a classical
turbulence decay is expected.

3



10
1

10
2

10
3

10
−2

10
0

t

K(
t)

 

 

EDQNM, β = 0.485, α = 1.2 · 10−3

Gomes-Fernandes et Al. 2012, SFG8

Gomes-Fernandes et Al. 2012, SFG13

Gomes-Fernandes et Al. 2012, SFG17

(a)

10
1

10
2

10
3

10
−2

10
0

t

K(
t)

 

 

EDQNM, β = 0.485, α = 1.2 · 10−3

Nagata et Al. 2013

(b)

10
1

10
2

10
−4

10
−2

10
0

t

K(
t)

 

 

EDQNM, β = 0.0, α = 0.6

Krogstad & Davidson 2011-2012, multiscale grid 1

(c)

Figure 2: Validation of EDQNM results by comparison with different experimental data sets.
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Figure 3: Analysis of non-classical decay regimes looking at time evolution of (a) turbulent kinetic energy, (b)
turbulent length scale ratio L/λ , (c) dissipation parameter Cε = ε L/

√
K and (d) instantaneous turbulence kinetic

energy decay exponent (assuming that the decay can be approximated as an algebraic function at all times).
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