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INTRODUCTION

The decay of incompressible homogeneous isotropic
turbulence (HIT), which can be studied via grid turbulence
experiments, is among the most important issue in turbu-
lence theory, since isotropic turbulence is the framework
in which the deepest investigations of nonlinear features of
turbulence can be performed. Even though numerous stud-
ies have been devoted to HIT since about one century, many
questions remain open. Among them, the identification of
scales which govern the decay of HIT still deserves further
investigations. Although there is consensus that the turbu-
lent kinetic energyK, after a possible transient relaxation
phase, follows an algebraic law, i.e.K(t) ∝ tnK , the ques-
tion of the dependence of the exponentnK to some specific
features of the initial condition has raised some controver-
sies. However, the most recent works indicate that there
is no universal regime and that the decay rate is definitely
governed by the details of the initial condition. Indeed, it
is generally stated in the literature that the exponentnK is
related to the asymptotic large-scale behavior of the longi-
tudinal velocity correlation functionf (r, t = 0) in physical
space, or equivalently, to the asymptotic behavior of the ki-
netic energy spectrumE(k, t = 0) in spectral space. But it
is worth keeping in mind that, due to technological limita-
tions, the exact behavior of the velocity correlation func-
tion, or that of the energy spectrum, at scales much larger
than the integral scale escapes both experimental and nu-
merical investigation at the present time. Besides, the con-
cept of large-scale asymptotic behavior is hard to reconcile
with real-life turbulent flows, which are bounded in space
and can be observed over finite times only. It is also inter-
esting to note that the Comte-Bellot - Corrsin theory, which
proves to be effective in predicting the value of the expo-
nentnK , relies on a single length scale which is the integral
scale.

The aim of this study is to identify the scales which

govern the decay of HIT over finite time. Our approach
involves the use of an optimal-control-based data assimi-
lation technique; the methodology is the following. First,
observations of a numerical reference decay are performed.
Then, using these observations, an optimization procedure
is employed to recover the initial condition of the refer-
ence decay, starting from an initial guess. The parts of
the initial condition which are reconstructed by the opti-
mization procedure are interpreted as having a significa-
tive impact on the decay. Besides, the optimization pro-
cedure also furnishes the gradient of the solution associated
to the decay with respect to the initial condition, allowinga
mathematically grounded identification of the scales which
govern the decay. In order to investigate a wide range of
initial conditions and flow regimes, it is chosen to use the
Eddy-Damped Quasi-Normal Markovian (EDQNM) model
to compute time evolution of the kinetic energy spectrum
E(k, t). This highly versatile model is known to yield very
accurate results for isotropic turbulence decay with good
resolution at both large and small scales, ensuring the reli-
ability of the results. The adjoint EDQNM problem is de-
rived in the present study for the purpose of the data assim-
ilation procedure.

DATA ASSIMILATION METHOD FOR OPTI-
MAL RECONSTRUCTION OF THE INITIAL
CONDITION

Given observationsy of a reference EDQNM simula-
tion, the nature of which will be specified later, the aim
of the data assimilation technique is to minimize the dis-
crepancies betweeny and a solutionE(k, t) of the EDQNM
equations. This leads to the introduction of the Lagragian
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L defined by:

L (E, Ẽ) =
1
2
‖y−H(E)‖2

O +
〈

Ẽ,
∂E
∂ t

+2νk2E−T (E)
〉

M
(1)

The operatorH in equation (1) is the observation opera-
tor from model spaceM to observation spaceO and al-
lows for the comparison between observationsy and solu-
tion E(k, t). The spectrum̃E(k, t) is the Lagrange multiplier
for the constraint on the dynamics ofE(k, t). The nonlinear
transfer termT (E,k, t) in the governing equation forE(k, t)
is closed by the EDQNM approximation. Writing the nec-
essary conditions for(E, Ẽ) to be a minimizer ofL and
setting:

∂E
∂ t

(k, t)+2νk2E(k, t)−T (E,k, t) = 0 (2)

−∂ Ẽ
∂ t

(k, t)+2νk2Ẽ(k, t)− T̃ |E(Ẽ,k, t) = H̃|E
(
y−H(E),k, t

)

(3)

Ẽ(k,Tf ) = 0 (4)

lead to the gradient of the LagragianL with respect to the
initial conditionE0(k) = E(k,0):

∂L

∂E0 (E, Ẽ ,k) =−Ẽ(k,0) (5)

The operators̃T |E andH̃|E in (3) correspond to the ad-
joint operators of the gradients of the energy tranfer term
T and of the observation operatorH. The above equations
allow to design the following iterative optimization proce-
dure for the reconstruction of the initial condition of the ref-
erence decay with associated observationsy. We start the
algorithm with a first guess for the initial energy spectrum
E0(k). At the ith iteration, Lin’s equation (2) is solved from
t = 0 to t = Tf , whereTf is the finite duration of the de-
cay under consideration. The solutionE(k, t) so obtained
is used to solve backward the adjoint problem (3)-(4) from
t = Tf to t = 0. The gradient of the Lagragian with respect
to the initial energy spectrum can then be computed from
equation (5). A descent method is used to update the esti-
mated initial condition, and we can continue to next itera-
tion. The quasi-Newton BFGS method is chosen to com-
pute the descent method and a step length is determined by
the use of bicomplex numbers. The optimization procedure
is stopped after achieving a substantial reduction by six or-
ders of magnitude in the value of the LagragianL .

REALIZABILITY, TYPES OF OBSERVATIONS

In order to ensure the realizability condition for the en-
ergy spectrum (E(k, t)≥ 0∀k, t) during the data assimilation
procedure, a functional form is prescribed for the initial en-
ergy spectrum. Two functional forms are considered for this
study. The first one is the proposal by Meyers & Meneveau
(2008) which accounts for all known features of the energy

spectrum. It can be written as follows:

E0(k) =

{
Bkσ1 k < kL1

Ck−5/3(k/kL2)
−β fL(k/kL2) fη (k/kη ) k ≥ kL1

(6)

fL(x) =

(
x

[xp +α5]
1/p

)5/3+β+σ2

(7)

fη (x) = exp(−α1x)

[
1+

α2(x/α4)
α3

1+(x/α4)α3

]
(8)

Equation (6) allows to distinguish the very large scales
(k < kL1), which are characterized by the slopeσ1, from
the large scales close to the peak of the initial energy spec-
trum E0(k), which are characterized by the slopeσ2. The
separation between large and very large scales is fixed at
kL1/kL2 = 10−3, this value ensures at least one decade be-
tween the wavenumberkL1 and the final position of the peak
of the energy spectrum att = Tf . Both kL2 andα5 govern
the position of the peak of the spectrum, and the param-
eter p prescribes its shape.β is the intermittency correc-
tion. kη sets the position of the Kolmogorov scale, while
the parametersα1−α4 govern the shape of the spectrum at
small scales and the bottleneck correction. The constants
B andC are used for normalization and preserve the con-
tinuity of the energy spectrum atk = kL1. The advantage
of this functional form is that a small number of param-
eters (11) is used for the description of the initial energy
spectrum, which may facilitate optimization. The data as-
similation procedure will allow to identify the parametersof
(6)-(8) that determine the decay. However, this functional
form precludes a detailed scale-by-scale analysis, and we
also consider a second functional form which is written as:

E0(k) = B(k)ks(k) (9)

wheres(k) is the local slope of the initial energy spectrum
and forms the control vector in the optimization procedure
(instead ofE0(k)), while B(k) ensures the continuity of the
spectrum.

In this study, we use several types of observations of
the reference decay. A first possibility is to observe the ki-
netic energy spectrumE(k, t) itself at different times during
the decay. We also consider the observations of statiscal in-
tegral quantities with physical meaning such as the kinetic
energyK, the integral scaleL and the dissipation rateε. Fi-
nally, we use the observation of the power-law exponentnK
driving the decay ofK. Various assimilation window sizes
Tf and frequencies of observations are considered.

DATA ASSIMILATION EXPERIMENTS BASED
ON THE MEYERS-MENEVEAU MODEL

We first consider data assimilation experiments based
on the Meyers-Meneveau spectrum model defined by (6)-
(8). The size of the assimilation windowTf is fixed at
104 initial eddy turn-over timesτ0. The reference decay
corresponds to a Saffman turbulence (σ1 = σ2 = 2 in (6)-
(7)) at high Reynolds number (the initial value of the Tay-
lor microscale-based Reynolds number isReλ = 800). Ten
observations of the reference decay are performed between
t = 103τ0 andt = Tf , which ensures to witness a fully de-
veloped isotropic turbulence. The estimated initial energy
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Figure 1: Derivatives of the LagragianL with respect
to the different paramaters in (6) ( σ1, σ2,

β , p, kL2 , ◮ α1, ◭ α2, •
α3, � α4, α5 and × kη ) versus the number of
iterations of the optimization procedure. The kinetic energy
K is observed.

spectrum used to initialize the optimization procedure is ob-
tained by perturbing by±10% the values of the parameters
of (6)-(8) chosen for the reference initial energy spectrum.
Several data assimilation experiments are performed with
different types of observations. Figure 1 illustrates results in
the case where the kinetic energyK is observed. The partial
derivatives of the LagrangianL with respect to the different
parameters in (6)-(8) and their evolutions according to the
iteration of the optimization procedure are reported. We no-
tice that the value of these derivatives at the beginning of the
data assimilation procedure varies widely depending on the
parameter considered. The leading parameters are the slope
at large scales close to the peak of the energy spectrumσ2,
and the parameterskL2 , α5 andβ that determine the initial
position of the peak of the energy spectrum and the inter-
mittency correction. The parameterp plays an intermediate
role, while the influence ofα1-α4 that parametrize the shape
of the energy spectrum at small scales seems marginal. It
also appears that the sensitivity of the Lagrangian with re-
spect to the slope at the largest scalesσ1 is negligible. These
results indicate that, contrary to the large scales close to
the peak of the energy spectrum, the largest scales do not
play a significant role in the decay. A reduction by 5 orders
of magnitude in the values of the derivatives of the Lagra-
gian with respect to the parameters of (6)-(8) is achieved,
which means that the data assimilation procedure has con-
verged. Figure 2 reports the evolution of the relative errors
on the slopesσ1 andσ2, defined as the relative differences
between the true values of these slopes and the estimated
ones, for different data assimilation experiments associated
to different types of observations: the kinetic energy spec-
trum E(k, t), the kinetic energyK, the integral scaleL, the
dissipation rateε, or a combination of these statistical inte-
gral quantities. No error reduction is achieved for the slope
σ1, even when quantities which area priori the most sen-
sitive to large scales such as the energy spectrum itself or
the integral scale are observed. In contrast, the true valueof
the slopeσ2 is recovered with good accuracy (relative error
about 10−3 at the end of the data assimilation procedure)
in all cases. This confirms that the value of the slopeσ1 at
the largest scales has no significant influence on the decay.
The gradient of the LagrangianL with respect to the initial
energy spectrum for the different data assimilation experi-
ments is given in figure 3. From the comparison between
figures 3(a) and 3(b), it appears that the maximum of the
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Figure 2: Relative errors on the slope at the largest scales
σ1 (grey lines) and on the slope at the large scales close to
the peak of the initial energy spectrumσ2 (black lines) ver-
sus the number of iterations of the optimization procedure.
The six types of lines (besides color) correspond to different
types of observations: E(k), K,
L, ε, ◮ K +L and � K +L+ ε. The kinetic
energyK is observed.

sensitivity of the Lagrangian is reached at a wavenumber
close to the position of the peak of the energy spectrum at
the end of the assimilation window. This gradient vanishes
at small scales in roughly the same way for the different
types of observations, but exhibits different shapes at large
scales. These shapes can be easily recovered by considering
the discrete expressions of the observed quantities in terms
of the energy spectrum. In the case where the observation
of the reference decay is a scalar, the slope at large scales
of the gradient of the Lagragian with respect to the initial
energy spectrum does not depend either on the character-
istics of the true intial energy spectrum or on those of the
estimated spectrum. For example, when the kinetic energy
K is observed,∂L

∂ k ∝ k at large scales whatever the features
of the true and estimated energy spectra, meaning that only
large scales close to the peak of the energy spectrum lead
the decay.

DATA ASSIMILATION EXPERIMENTS BASED
ON A SCALE-BY-SCALE DESCRIPTION

The functional form (9) is now prescribed for the ini-
tial energy spectrum. The control vector is formed by the
local slopes(k) of the initial energy spectrum and its di-
mension is equal to the number of resolved modes (= 165).
The true initial energy spectrum, the size of the assimila-
tion window, the number of observations and their distri-
bution in time are the same than for the data assimilation
experiments of previous section. In order to confirm the ro-
bustness of the results established in the present work, three
types of estimated initial energy spectra are used as first
guesses for the optimization procedure for the reconstruc-
tion of the reference initial energy spectrum. The first one
(type A) corresponds to a constant perturbation of−25% of
the true value of the slope at large scales. The inertial and
the dissipative ranges are respectively defined by a constant
slope. For the second type of estimated initial energy spec-
tra (type B), a random slope is assigned for the initial en-
ergy spectrum each half-decade. The slopes at large scales
are picked between 1 and 4. The third type (type C) corre-
sponds to the assignment of a random local slope for each
of the energy modes. We consider three data assimilation
experiments which use the different estimated initial energy
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Figure 3: (a) Estimated energy spectra att = 0 (full lines) and att = Tf = 104τ0 (dashed lines) at the first iteration of the
optimization procedure; (b) gradient with respect to the initial energy spectrumE0 of the LagragianL for different types of
observations: E(k), K, L, ε, ◮ K +L and � K +L+ ε.

spectra discussed above, and where the exponentnK driv-
ing the decay of the turbulent kinetic energy asK(t) ∝ tnK

is observed. The interest of using the observation of the
exponentnK is thatnK furnishes a purely dynamical infor-
mation about the decay that can be easily compared with
most experimental data. Results concerning these three nu-
merical assimilation experiments are reported in figure (4).
Figure 4(a) illustrates the evolution of the value of the cost
function J(E) = 1

2 ‖y−H(E)‖2
O with respect to the itera-

tion of the optimization procedure. The three experiments
have achieved a reduction by six orders of magnitude in the
value of the cost function. Figure 4(b) reports the difference
between the values of the local slope of the estimated initial
energy spectrum at the end and at the beginning of the op-
timization procedure. A non-zero value for this difference
means that the corresponding zone of the estimated spec-
trum has been modified by the assimilation procedure. It ap-
pears that, in all cases, only a narrow region of the estimated
spectrum has been corrected by the optimization procedure,
which is located roughly between the positions of the peak
of the energy spectrum at the beginning and at the end of the
assimilation window. The estimated spectrum has not been
modified at scales ten times bigger than the integral scale
at the end of the assimilation window, whereas the shape of
the estimated spectrum at the largest scales significantly dif-
fers from that of the reference initial energy spectrum (see
figures 4(d)-4(f)). The gradient of the LagragianL with
respect to the initial energy spectrum is reported in figure
4(c) for the different assimilation experiments. In all cases
it appears that∂L

∂ E0 ∝ k at large scales as in the case where
the kinetic energy is observed. This result can be recovered
analytically from the Gâteaux derivative of the expression
of the exponentnK obtained from the evolution equation of
the kinetic energyK in the case of HIT. This result is inde-
pendent of the features of the considered energy spectrum.
As for the assimilation experiments of previous section with
other types of observations, the maximum of sensitivity of
the Lagrangian is located at the integral scale of the energy
spectrum at the end of the assimilation window (figure 3
is scaled with the initial position of the integral scale at
wavenumberk = kL(t = 0) whereas figure 4 is scaled with
the final position of the integral scalekL(t =TF )). The refer-
ence, estimated and retrieved at the end of the optimization
procedure initial spectra are illustrated in figures 4(d)-4(f)
for the three experiments. As mentionned above, although
the optimization procedure has converged in all cases, the

true shape of the estimated spectrum at the largest scales has
not been recovered. Only the slope of the estimated spec-
trum has been corrected between the positions of the peak
of the energy spectrum at the beginning at the end of the as-
similation window (see e.g. figure 4(h)). This is consistent
with the fact that observing the decay exponent only, one
has no control of the absolute value of the kinetic energy.
It also shows that, if the kinetic energy is high enough to
sustain high-Reynolds number evolution, without transition
to low-Reynolds number regime (which exhibits different
decay exponent values), only the shape of the large scale
energy spectrum matters.

CONCLUSION
This study was devoted to the analysis of grid turbu-

lence decay, with the purpose of identifying scales and re-
lated features of the energy spectrum that govern the de-
cay regime. To this end, an optimal-control-based data as-
similation technique was employed. The present results
show that the decay of grid turbulence is not governed by
the asymptotic large scale behavior of the energy spec-
trum E(k → 0, t = 0). This conclusion is robust, since it
is observed in all cases considered, that mix both full en-
ergy spectrum and integral observations and both Meyers-
Meneveau parametric spectrum model and local scale-by
scale initial spectrum model. Further results can be found
in Mons et al. (2014). The decay regime over finite time
is governed by large scales ranging approximately from
the initial integral scale to the final integral scale, a van-
ishing sensitivity being observed for large scales located
within one decade outside these bounds. The most impor-
tant feature is the shape of the spectrum in this range. If
a slope can be identified, then Comte-Bellot-Corrsin’s for-
mula yield an accurate prediction of the decay regime. Ac-
cording to present observations, large scales should be un-
derstood as scales slightly larger than the integral scaleL(t)
such thatkL(t) =O(1). This is coherent with previous stud-
ies dealing with evolution of initially non-self-similar en-
ergy spectra (Meldi & Sagaut, 2012). Another point here
is that in wind tunnel grid turbulence the largest scales are
anisotropic and non-homogeneous due to wall effects, but
this breakdown of homogeneity at very large scales is not
observed to significantly corrupt the nearly isotropic behav-
ior reported by many researchers. This is coherent with the
present conclusions.
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Figure 4: First row: (a) Value of the cost functionJ normalized by its initial value, (b) difference between thelocal slope of
the initial energy spectrum obtained at the end of the optimization procedure (iteration(M)) and that of the spectrum at the
first iteration (i.e. the estimated spectrum), and (c) gradient with respect to the initial energy spectrumE0 of the LagragianL
(at the first iteration of the optimization procedure). The three types of lines correspond to different estimated initial spectra:

type A, type B, type C. Second row: true (black dotted line), estimated (black dashed line) and retrieved
at the end of the optimization procedure (black full line) initial energy spectra when the estimated initial energy spectrum is of
type A (d), B (e) and C (f). The energy spectra att = 103τ0 (dash-dotted grey lines) and att = Tf = 104τ0 (dashed grey lines)
are also reported in the figures. A zoom of Figures (d)-(f) in the vicinity of the peak of the energy spectrum att = Tf is reported
in Figures (g)-(i). The decay exponentnK is observed.
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