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ABSTRACT
We have performed direct numerical simulations of

transitional turbulence in pipe flow for Re=2,250. The
results confirm the existence of a spatio-temporal inter-
mittency when turbulence is localized in a puff convected
downstream. To analyze the turbulence, we follow a turbu-
lent puff by a 3D moving-window centered at the location
of the maximum total energy of transverse (turbulent) mo-
tion. The flow field data collected over 6,000 time instances
(snapshots) have been analyzed by Proper Orthogonal De-
composition (POD) and used for identifying vortical struc-
tures. The presence of large-scale structures in a puff has
been found by time-averaging of the cross-sectional turbu-
lent velocity field and confirmed by POD analysis and by
applying theQ- andλ2-criteria.

PUFFS IN TRANSIENT PIPE FLOW
Forty years ago, experiments conducted in a pipe for

mixed laminar-turbulent flows at 2,000<Re <2,700 re-
vealed turbulent regions convected downstream (see Wyg-
nansky & Champagne, 1973 and Wygnanskyet al., 1975).
The authors called these regionspuffs. It was found that, de-
pending on the flow conditions, puffs grow, split and even
recombine. A single puff atRe ≈ 2,280 and four puffs at
Re≈ 2,630 were experimentally observed in Wygnansky
et al. (1975). The flow in pipe becomes fully turbulent at
low Reynolds numberRe ≈ 3,000. Recently, the splitting
events were studied both numerically and experimentally
(Moxey & Barkley, 2010; Avilaet al., 2011). Moxey &
Barkley (2010) carried out extensive direct numerical sim-
ulations in pipes of variable lengths up to 125 diameters to
investigate the nature of transitional turbulence in pipe flow.

One of the main conclusions of Avilaet al. (2011)
is that isolated (or equilibrium) puffs as seen by Wygnan-
sky et al. (1975) do not exist. After some finite lifetime
governed by a super-exponential distribution, a given puff
will either decay or split. To understand the role that puffs
play in the transition process, a detailed understanding of
the mechanism that dictates how a puff grows and splits is
therefore necessary.

We note that although puffs will eventually split or
decay, near the critical Reynolds number their lifetime is
extremely high with order around 108 time units. Conse-
quently, studying the properties of long-time transient puffs

around these Reynolds numbers, using highly resolved nu-
merical experimental studies, will provide further insight in
the laminar-turbulent transition in a pipe.

The aim of the present paper is to analyze the turbu-
lent velocity field inside a long-time transient puff travel-
ling through a pipe. For this purpose, we resumed the long
time DNS described in Moxey & Barkley (2010) for Re =
2,250 in axially periodic pipes of length L = 25D and 50D.
The approximate length of a single puff is about 25D. For
longer pipes, the flow is intermittent with irregular alter-
nation of turbulent andcompletely laminar regions. There
is no clearly distinguished interface between the turbulent
and laminar zones neither near the leading edge, nor near
the trailing edge of a puff. Additionally, in long pipes,
turbulent-laminar states exhibit complex spatio-temporal
dynamics, with puffs splitting and merging as the simula-
tion evolves. To ensure the existence of a single puff, we
analyze the data obtained for a pipe withL = 25D.

In Moxey & Barkley (2010), the magnitude of the
transverse velocityq(x,y,z, t) =

√
u2+v2 was used as an

informative and easily accessible quantity to indicate the
existence of turbulence in the flow;(x,y) are in-plane trans-
verse coordinates,z is the axial coordinate. For laminar
flow, there is no transverse motion,u = v = 0 and, con-
sequently,q = 0. Figure 1 illustrates the approach of a
moving-window (mw) of the width±2D centered around
the location whereq= qmax. In this paper, for each temporal
snapshot, we identify a cross-section (z-location), wherein
thecross-sectional mean value of< q2 > is maximal. Then,
we construct a 3D-window of the width approximately±2D
centered around this location.

We use the spectral element codeSemtex (Blackburn &
Sherwin, 2004), with the same mesh and polynomial order
as used in Moxey & Barkley (2010) and 384 Fourier modes
in the axial direction. Therefore, the moving-window con-
sists of 63 cross-sectional slices, hereafter, denoted as S1,
S2,..., S63;< q2 > is maximal at S32. In the time-evolving
frame, this moving-window aims to observe the moving
puff in a “quasi-Lagrangian” sense, defining the 3D sub-
domain wherein the data analysis is carried out. We col-
lected 6,000 snapshots of the flow field, with a time inter-
val of ∆T = 0.2 time units between snapshots. Therefore,
a puff, moving in the pipe with a velocity slightly smaller
than the bulk velocity, convects approximately 1,200D or
48 pipe lengths.

1

June 30 - July 3, 2015 Melbourne, Australia

9
3B-5



Figure 1. Bottom: 2D visualization of flow in a straight pipe ofL = 50D at Re=2,250: contour of the instantaneous transverse
velocity magnitudeq and the space-time trace of its maximal valueqmax(x,y,z, t) (in red); a moving-window of the width
±2D centered aroundqmax(x,y,z, t). Top: 3D iso-surfaces of the instantaneous transverse velocity magnitudeq in a zoomed-in
moving-window.

In this paper, we focus on cross-sectional (in-plane)
fields when there is no mean flow for fully-developed flow
in a pipe. We decompose the velocity as fluctuating and
coherent parts

u(x,z, t) = u′(x,z, t)+uc(x,z, t), (1)

where u = (ur,uθ ) andx = (r,θ ). Assuming that in
the transitional flow at hand organized (coherent) large-
scale structures exist, at eachz-locationu′(x,z, t) = 0 but
uc(x,z, t) 6= 0; a bar denotes the time-averaging over 6,000
snapshots.

The developing transverse (cross-sectional) motions
inside the puff play a special role in the onset of turbulence.
In Figure 2, we show 3D iso-surfaces of the time-averaged
transverse velocity components,ur anduθ inside the puff.
First of all, it is striking that prints of contours on the trail-
ing edge section (S1) have a periodic structure around the
circumference of the pipe. Further downstream, the peri-
odicity breaks down. Figure 3 shows separately S1, S32
and S63 - the trailing edge, middle and leading edge cross-
sections, respectively, of the moving window. In the cap-
tion to Figure 3, we deliberately use the notationur in favor
of the decomposition (1). The near-wall periodic waviness
clearly indicates the existence of low-speed fluid ejection
(ur < 0) at the wall. On the other hand, the high-speed fluid
flows away from the center towards the wall (ur > 0). This
is the mechanism of developing the well-known near-wall
hairpin-like vortices as the onset of turbulence. Similar pat-
terns have been found in van Doorne & Westerweel (2009)
from particle image velocity measurements.

In conclusion of this introductory part, the time-
averaged radial velocity pattern suggests the presence of or-
ganized large-scale structures in the puff (Fig. 3a).

POD OF THE EQUILIBRIUM PUFF
The idea of POD is to generate an orthogonal set of

basis temporal and spatial modes which span an ensem-
ble of data (snapshots), collected experimentally or from a
numerical procedure of an evolving dynamical system. In
computational fluid dynamics, the POD has been applied to
study most DNS results of benchmark tests of fully turbu-
lent flows at relatively high Reynolds numbers.

The POD eigenvalue spectrum shows the significance
of an individual mode in terms of energy. Consequently,
there is an energy transfer from low index POD modes to
higher modes and this transfer is local; energy transfers
among the neighboring POD modes. In addition, all known
POD eigenvalue spectra of developed turbulent flows in the
literature span at least over 6-8 orders of magnitude.

We employ the following decomposition of the veloc-
ity field: u(x, t)

u(x, t) =
M

∑
j=1

a j(t)φ j(x), (2)

wherex = (x,y,z) or x = (r,θ ,z), andφ j(x) anda j(t) are
the j-th orthogonal spatial and temporal modes, respec-
tively. The POD procedure yields the eigenfunctions{φ j},
which form the expansion basis in the above expression.
Here, we implement the method of snapshots introduced
by Sirovich (1987) to obtain the eigenfunctions and corre-
sponding eigenvalues. Consider the collection ofM data

snapshots,
{

uk
}M

k=1, whereuk is a vector containing the
velocity field at timetk for all x = x1, . . . ,xN , that is, the
elements of theM×N (time×space) matrixuk are

uk
i = u(tk,xi), i = 1,2, . . . ,N, k = 1,2, . . . ,M. (3)

These snapshots are used to compute the POD basis vectors,
which yield a representation of the data that is optimal in the
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Figure 2. 3D iso-surfaces of the time-averaged transverseur-velocity in a moving-window of the width±2D; at each time
instance, t, the window is centered around the cross-section S32 with< q2(x,y,z, t) >=< q2 >max (z = S32, t); the brackets
indicate cross-sectional averaging, the cross-sections S1, S32 and S63 withur-contours are shown.
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Figure 3. Contours of the time-averaged transverse velocity components,ur = ucr = Mean(Vr) (a-c),uθ = ucθ = Mean(Vθ )

(d-f). S1, S32 and S63 - the trailing edge, middle and leadingedge cross-sections, respectively, of a moving window.

sense that, for any given basis size, theL2 norm of the error
is minimized. This is equivalent to solving the eigenvalue
problem CA = ΛA, where the eigenvectorsa j (columns
of the M ×M matrix A) represent the temporal modes,Λ
is a diagonalM ×M matrix of the eigenvaluesλ j. Here,
C is a correlationM ×M matrix computed by multiplying
the snapshotsM ×N matrix ui by its transpose(ui)T and
normalizing by the number of snapshotsM. Owing the or-
thogonality of the temporal basis eigenvectorsa j, j-th POD
spatial basis vectorφ j(x) is found from the expansion (2):
φ j(x) = ∑M

k=1ak
ju

k, j = 1,2, . . . ,M, whereak
j denotes the

k-th element of thej-th eigenvectora j. Finally, the velocity
field reconstructed by truncated numberNm < M of modes
is computed from:

ũk =
Nm

∑
j=1

ak
jφ j, (4)

for everyk = 1,2, . . . ,M.
The POD expansion has a hierarchical structure, which

means each energetic process is attributed to a certain
spatio-temporal mode and each spatio-temporal mode adds
its basic flow structure to the total turbulent flow field. As
follows from the definition of the auto-correlation matrix
C, the magnitude of thej-th eigenvalue,λk, estimates the
contribution of thek-th mode to the total energy, that is,
Etotal = ∑M

k=1λk.
In this study, we apply POD analysis to the data set col-

lected inside a moving window (mwPOD). In this sense, the
suggested mwPOD approach invites an obvious question.
Indeed, it is not a Lagrangian approach, we do not follow
the same fluid particles. We “trace” a moving puff identify-
ing its location at each snapshot by a condition (< q2 >max)
and, even if the time interval between snapshots is chosen
reasonably small, it is set quite arbitrarily. One can claim
that such conditionally sampled ensemble of data sets is not
governed by a dynamic system (Navier-Stokes) or, in other
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Figure 4. Eigenvalue spectrum, original vs. randomized
data.

words, the moving-window snapshots are an ensemble of
uncorrelated data. To check, we performed a simple test:
POD analysis of data collected over the moving window;
then, at each snapshot, the 3D data was randomly shuffled
and the POD analysis repeated. Figure 4 shows the test
result. First, the eigenvalue spectrum of the original data
shows clear signs of a typical POD analysis: eigenvalues
span more than six orders of magnitude. On the other hand,
the spectrum of randomly rearranged (dynamically uncor-
related) data is rather flat showing the energy decrease by
one-and-a-half order of magnitude only.

We have performed mwPOD analysis of the radial (ur)
and circumferential (uθ ) velocity components. In Fig-
ure 5, we show the eigenvalue spectra of velocity compo-
nents for different number of snapshots. For 6,000 snap-
shots (modes), the spectrum spans over about 6.5 orders of
magnitude.

The number of basis modes required to capture a spec-
ified percentage of the turbulent energy is denotedNb and
indicates the total number of degrees of freedom of the flow
at hand. Figure 6 showsNb to capture 95% and 99% of the
total energy.

The number of basis modes should be asymptotically
achieved with increasing the number of snapshots. Our re-
sults show the evidence of the asymptotical tendency for
95% (Nb ≈ 1,200), but do not allow conclusions aboutNb
for 99%. This can be due to the moving-window (test vol-
ume) size and is the subject of further study. In Duggleby
et al. (2007), the number of basis modes to capture 90% and
94% of the energy is 2,763 and 5,000, respectively.

In Figure 7, we show the color map ofur-velocity re-
constructed by different number of mwPOD modes. Al-
ready the first four modes strikingly reproduce the pattern
similar to the entire field shown in Figure 3a. In Table
we present the relative energy accumulated in the firstNm

mwPOD modes. It is noteworthy, that the first four modes
accumulate only 6.5% of the total energy. Apparently, the
structure that we see in Figure 3a is formed even by the first
four POD modes, while other modes “drop” energy inside.

Q- AND λ2-CRITERIA FOR VORTICAL MOTION
An “eddy” (structure) is defined as a region with

a positive second invariantQ = 1
2

(
‖ΩΩΩ‖2−‖S‖2

)
=
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Figure 6. Number of modes to capture 95% and 99% of
the energy.

Table 1. Relativeur-velocity energy accumulated in the
first Nm POD modes,Em/Etotal = ∑Nm

k=1 λk/∑6000
k=1 λk

Nm 2 4 10 100 500

Em/Etotal 0.035 0.065 0.130 0.523 0.843

− 1
2

(
∂ ui
∂ x j

∂ u j

∂ xi

)
(Hunt et al., 1988). Here,S and ΩΩΩ are

the norms of symmetric and antisymmetric components
of the velocity gradient tensor∇u ≡ ∂ ui

∂ x j
, that is, Si j =

1
2

(
∂ ui
∂ x j

+
∂ u j

∂ xi

)
andΩi j =

1
2

(
∂ ui
∂ x j

− ∂ u j

∂ xi

)
. PositiveQ indi-

cates that the vorticity prevails over shear. By definition,
Q is the source term in the Poisson equation for pressure

∇2p = − ∂ ui
∂ x j

∂ u j

∂ xi
≡ 2Q, and the criteriaQ > 0 indicates the

low-pressure regions that can be associated with vortical
structures. In planar flows, the conditionQ > 0 is equiva-
lent toλ2 < 0, whereλ2 is the second eigenvalue ofΩΩΩ2+S2

(Jeong & Hussain, 1995). We used the conditionsQ> 0 and
λ2 < 0 as large-scale vortical structures identifiers. Figure 8
shows the results. First of all, the regionsQ > 0 andλ2 < 0
overlap. Moreover, on the cross-sectionS1, they overlap
with the structure pattern shown in Figure 3.

TURBULENCE STATISTICS
The organized vortical structures in the puff have been

revealed by simple time-averaging (Fig. 3), by mwPOD
(Fig. 7) and by applyingQ- and λ2-criteria (Fig. 8). To
obtain turbulence statistics, we computed the transverse ve-
locity probability distribution function (PDF) and Kurtosis
(Ku). The data were collected at 6,084 points on the se-
lected cross-sections (S1, S32 and S63) for 6,000 snapshots,
that is, total 36,504,000 data values at each slice. Figure 9
shows color maps of the KurtosisKu of the transverse ve-
locity components,ur (a-c) anduθ (d-f).

An increase of the Kurtosis can be interpreted as in-
dication of rare events and the intermittent nature of tur-
bulence. Comparing Figures 3a and 9a for radial motion
indicates that in the region, that we consider as a large-scale
(coherent) structure, KustosisKu ≈ 8, much higher than for
a Gaussian distribution. The same but more moderate devi-
ation from the GaussianKu = 3 we see for the circumfer-
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Figure 5. mwPOD: eigenvalue spectra ofur anduθ velocity components.

ential uθ -velocity component (Fig. 9d) whereKu ≈ 5.5.
On the other hand, on the middle cross-section (S32) of
moving-window, where the energy of the transverse motion
is maximal, the Kurtosis is quite close to the Gaussian, ex-
cept a high Kurtosis typical for the near-wall region.

In Figure 10, the PDF curve shows a non-Gaussian
probability distribution of the fluctuating radial velocity
with a spike typical for the intermittent turbulence. Figure
11 shows the PDF very close to the Gaussian for−3.5 <
u′r/u′r,rms < 3.5. The deviation from the Gaussian curve re-
lates to the events that take place in the near-wall region.
Our results suggest that the radial transport fluctuations in a
puff in transitional pipe flow have an intermittent nature.
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Figure 7. mwPOD reconstructedur-velocity field.
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Figure 8. Contours of the second invariantQ (a-c); contours ofλ2 (d-f). S1, S32 and S63 - the trailing edge, middle and
leading edge cross-sections, respectively, of a moving-window.
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Figure 9. Color maps of the KurtosisKu of cross-sectional velocity components,ur (a-c) anduθ (d-f). S1, S32 and S63 - the
trailing edge, middle and leading edge cross-sections, respectively, of a moving-window.
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