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ABSTRACT 

Spatial numerical simulations (SNS) are performed to 

study transition to turbulence in a supersonic flat plate 

boundary layer forced by finite amplitude perturbations, 

where the freestream Mach numbers is 2.5 with the 

isothermal wall condition. Three-dimensional isotropic 

disturbances are superimposed on the laminar profile for 

Reynolds number based on the displacement thickness 

*of 1000 at the inlet plane of the computational domain. 

The effects of the peak location of the disturbance 

spectrum and the magnitude distribution in the wall 

normal direction are analyzed. Numerical results indicate 

that energy spectra with a peak located at around the 

wavenumber of kmax=1.0 play an important role to induce 

transition to turbulence. The disturbance at lower 

wavenumbers with concomitant turbulence in the free 

stream shows an early appearance of hairpin-like structure 

in the transition region. The vortical structures on set of 

transition to turbulence rapid evolving to a hairpin packet 

with fine secondary structures downstream are shown in 

this paper,  which is an inherent structure induces 

transition to turbulence in the supersonic boundary layer. 

INTRODUCTION 

A deep understanding of the principal route to 

turbulence in the wall-bounded shear flows is of great 

fundamental and practical interest. Various disturbances 

affect transition to turbulence in a laminar boundary layer, 

which has been investigated in detail so far. The primary 

stage of transition in a low-turbulence environment has 

been extensively studied by stability theories (Mack 1975) 

and flow fluctuation measurements by Kendall (1975) or 

Graziousi & Brown (2002). Understanding of the late 

stage of transition scenario or the nonlinear transition 

(Graziousi & Brown 2002) due to high level disturbances 

for boundary layers is even less pronounced especially for 

supersonic one due to experimental difficulties.  

In this study, a spatial simulation of a supersonic, 

isothermal flat plate boundary layer flow at Mach 2.5 is 

analyzed. Growth of finite amplitude disturbances on 

transition to turbulence in a developing boundary layer 

downstream require the application of fully spatial 

formation in a  numerical simulation without extended 

temporal simplifying assumptions. The emphasis of this 

study is to assess the transitional scenarios for supersonic 

boundary layer and the late stage of streak breakdown and 

observing the transitional structures in a Lagrangian 

tracking manner, which leads to finding an inherent 

structure generated from finite-amplitude perturbations 

which induces transition to turbulence in the supersonic 

boundary layer. 

SMULATION DETAILS 

In the SNS of spatially developing boundary layer, the 

non-dimensional equations governing the conservation of 

mass, momentum, and energy for a compressible 

Newtonian fluid are solved. Note that displacement 

thickness at the inlet boundary layer (δ*) is chosen to be a 

representative length scale.  

 The computational domain size is Lx×Ly×Lz= 

300*×30*×33*. The form of the solenoidal disturbance 

is given as 

 2

max

4
)/(2exp)( kkkkE  , (1) 

where k is wavenumber and the turbulence energy peak 

locates at kmax. In order to meet the no-slip boundary 

condition at a wall, a window function to impose zero 

velocities at the wall is used. High-order compact upwind 

biased scheme with boundary schemes (Deng et al. 1996, 

Deng & Maekawa 1997) are used for spatial derivatives 

and a 4th-order Runge-Kutta scheme for time 

advancement. The Navier-Stokes characteristic boundary 

conditions by Poinsot and Lele (1992) are used in the 

streamwise and normal directions and periodic boundary 

conditions in the spanwise direction. For 3-D spatial 

numerical simulations, after a grid-convergence analysis, 
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the computational grid is Nx×Ny×Nz= 901×101×96. The 

grid is clustered toward the wall in the wall normal 

direction. The finite amplitude of the disturbance is 1, 1.5, 

2, 2.5% at the boundary layer inlet and kmax is 1.0 where 

the corresponding wavelength is 2*.  

Note that a window width affects transition to 

turbulence in the cases of 1.5, 2, and 2.5%. Figure 1 

shows the window widths employed in this simulation, 

where the inlet streamwise velocity distribution is also 

presented.  

In the preliminary simulations of various disturbances, 

the effect of  kmax was investigated, where the employed 

kmax of the disturbances are π, 2.0, 1.0 and 0.5 and the 

magnitude of each disturbance is 2.0%. 
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Fig. 1 The distributions of the window functions  and 

the inlet mean streamwise velocity uin presented by red 

line. 

RESULTS 

First of all, the effect of kmax was investigated. Figure 2 

shows a top view of the visualized low-speed streaks (blue 

contours) and quasi-streamwise vortices with hairpin 

packets (yellow contours).   

Fig. 2  Downstream evolution of second invariant 

Q(=0.005; yellow) structure and low-speed streak u’(= -

0.1; blue) for 2.0% case; a) kmax =, y<4, b) kmax=, y<10, 

c) kmax =2.0, y<4, d) kmax =2.0, y<10,e) kmax =1.0, y<4, f)

kmax =1.0, y<10, g) kmax=0.5,y<4 and h) kmax=0.5, y<10. 

A comparison between Fig.2 (a), (c), (e), and (g) 

indicates the effect of kmax of the disturbance on the 

transitional structure in the boundary layer, when the flow 

is forced by the disturbance with the same window width 

of 0<y<4, as shown in Fig.1. Figures 2 (b), (d), (f), and (h) 

also show the effects of kmax of the disturbance on the 

transitional structure in the boundary layer, where the 

same window of 0<y<10 is adopted. 

Figure 2 shows the long streamwise low-speed streaks 

shown by blue contours with a wall plane.  As shown in 

Fig. 2 (a) and (b), low-speed regions are associated quasi-

streamwise near-wall vortices. Quasi-streamwise vortices 

appear on the flank of the streak.  Figures 3 (c), (d), (e), (f), 

(g) and (h) show many arch-vortices and these quasi-

streamwise vortices as well. Isolated near-wall arch 

structures are clearly visualized in Fig.2(c) and (d). 

Successive   arch structures or hairpin heads on the low-

speed streak are dominant at downstream locations of 

x>100 in Figs.2 (e), (f), (g) and (h). These numerical 

results indicate that transition is induced effectively by 

forcing at the lower wavenumbers of kmax such as 

kmax=1.0 and 0.5 with the wide windows of 0<y<10. A 

comparison of Fig.2 (g) and (h) indicates that forcing with 

wide windows is effective to create successive hairpins.  

Figure 3 indicates the evolution of the shape-factor of the 

boundary layer forced by various upstream disturbances 

with three window widths of y<2.5, y<4, and y<10, where 

the magnitude of each disturbance is 2.0%.  

Fig. 3 Downstream evolution of shape factor for the 

disturbance magnitude of 2.0%. 

Figures 4 and 5 show the Fourier spectrum of u 

velocity fluctuation at the streamwise location of x/*=150 

(mid-plane in the streamwise direction) for the flow 

forced by the disturbance of kmax=2.0 and 1.0, respectively, 

where  indicates spanwise wave number. As Fig. 4 

shows, the spectrum peak locates at  =1.0 corresponding 

to the streaky structures in the instantaneous flow field. As 

shown in Fig.2(c), isolated arches appears around 

x/*=150. On the other hand, as shown in Fig.2 (e), 

successive hairpins appear around x=150.  A comparison 

of Fig.4 and Fig.5 indicate that streaky structures with the 

isolated arch on the low-speed streak are dominant at 

x=150, however successive hairpins appears in Fig.5, 
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where Fourier spectrum at 0.5< <2.0 becomes dominant 

in this transitional flow. In the turbulent boundary layer 

downstream, by the formation of an arch vortex (arch of 

horseshoe) spanning a few streaks, the elongated streak 

disappears. The upstream lift-up streak and adjacent 

streaks create another hairpin packets (secondary and 

tertiary hairpins), after a short evolution, these trailing 

legs fill the boundary layer inside. 

Figure 4.  Fourier spectrum of velocity fluctuation in the 

case of kmax =2.0 and the width of window function of 

0<y<4*( x/δ*=150) .  

Figure 5.  Fourier spectrum of velocity fluctuation in the 

case of  kmax = 1.0 and the width of window function of 

0<y<4*( x/δ*=150).  

As indicated in the evolution of the shape-factor of the 

boundary layer shown in Fig.3, forcing by the 

disturbances at the lower wavenumbers of kmax such as 

kmax =1.0 and 0.5 with the wide windows of 0<y<10 is 

effective for transition to turbulence. Secondly, in this 

paper, effects of the magnitude of the disturbance are 

investigated for the disturbance of kmax =1.0, which is of 

effective to induce transition and no essential difference is 

observed in the transitional flow forced by the disturbance 

kmax =0.5, as shown in Fig.3, where the decaying shape-

factor in the cases of kmax =1.0 and 0.5 are similar.  

Figure 6 indicates the evolution of the shape-factor of 

the boundary layer forced by various upstream 

disturbances, where kmax is 1.0, the disturbance 

magnitudes are 1, 1.5, 2, 2.5% of the freestream velocity 

and the widths of the window function are 0<y<2.5*, 

0<y<4*, 0<y<10*. When the magnitude is very small at 

the present Reynolds and Mach numbers, transition to 

turbulence is not achieved in the simulation, different 

paths to transition may be active (see Fedorov (2011)). 

However, the magnitude of this disturbance is more than 

1.0% seems to leads transition to turbulence.  

COHERENT MINIMAL STRUCTURE 

In this section, we will focus our attention on the 

slower transitional structures in the computational domain 

of 0<x/*<300. For instances, the flow forced by the 

disturbance of the magnitude of 2% with all of the 

window width, and the flow forced by the disturbance of 

the magnitude is 1.5% with the window width of 0<y<10 

or 0<y<4 are focused in this section.  
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Figure 6.  Evolution of shape-factor of the boundary 

layer forced by various upstream disturbances 

(Parameters are magnitude of disturbance and width of 

the window function) 

Figure 7.  Fourier spectrum of velocity fluctuation 

in the case of the magnitude of 2% and the width of 

window function of 0<y<10*.  
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Figure 7 shows the Fourier spectrum of u velocity 

fluctuation, where  indicates spanwise wave number. As 

this figure shows, the spectrum peak locates at  =0.8～
1.0 corresponding to the streaky structures appeared in the 

instantaneous flow field.  In these cases, we can find a few 

typical structure and streaky structures as well, where 

these structures grow or develop quickly downstream and 

these structures are usually localized or isolated in the 

flow field. 

Duguet et al. (2012) performed direct numerical 

simulations of the low-speed boundary layer to track the 

dynamics in the region of phase space separating 

transitional from relaminarizing trajectories. They found 

that the structure is dominated by a robust pair of low-

speed streaks, whose instabilities generate hairpin vortices 

evolving downstream into transient disturbances.  

Cherbini et al. (2013) showed localized flow structures 

living on the edge of chaos to understand transition to 

turbulence. They defined the structure as the hairpin-

dominated edge state. Recent progress in understanding 

transition to turbulence is based on the application of 

concepts from dynamical systems theory. The picture that 

emerges builds on invariant solutions of the Navier-Stokes 

equations such as fixed points and traveling waves.  

 

 

 

t=800 

 
t =825 

 
t =850 

 
t =875 

 
x=0                    x=100                 x=200                     x=300 

 

 

 

 

 

 

 

 

Figure 8 shows the visualized low-speed streaks (color: 

blue, isosurface of u=-0.1) and the vortical structures 

(color: yellow, isosurface of Q=0.005) visualized with iso-

surfaces of the second invariant Q of the velocity gradient 

tensor evolving to a hairpin packet at the non-dimensional 

time respectively. The visualized vortical structures on set 

of transition to turbulence are observed, where spanwise-

inclined vortices and hairpin heads appear around x=120* 

at t=800 and fine structures evolve along the streak shown 

in successive snapshots at t=825, 850 and 875. Another 

onset structures are observed around x=220* at t=800. 

Hairpin heads observing in the outer boundary layer are 

due to the lift-up low-speed streaks (see Cherubini et al. b 

2011). This fact suggests that an inherent structure induces 

transition to turbulence in the boundary layer. Cherubini et 

al. investigated the linear and nonlinear optimal 

perturbations in a low-speed boundary layer. The 

nonlinear optimal is characterized by spanwise inclined 

vortices, whereas the linear optimal contains streamwise 

vortices. 

     Another evidence of evolution to turbulent 

boundary layer is energy spectrum at various stages. 

Energy spectrum indicates the statistical feature of the 

transitional stages.  

Figures 9 a) and b) indicate the energy spectra of 

fluctuating u velocities at x=60* and 120*, where St is 

Strouhal number defined by the displacement thickness 

and the freestream velocity. The Strouhal number 

indicates the corresponding wave number and non-

dimensional frequency. As these figures show, the peak at 

St=0.1 appears at y=0.5* (Black line) in the case at 

x=60*, then the rapid growth in the spectrum downstream. 

Note that the sampling frequency used for time averaging 

is not high enough to capture high frequency phenomena 

in the simulation. Therefore, the energy spectrum 

employed for time averaging to obtain longer time data 

series does not follow high frequency phenomena, as 

shown in Fig.9 (b). The energy shows no decrease for 

higher wavenumbers. 
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Figure 8.  Snapshots of the vortical structure structure 

emerged at the downstream location around x=120 at 

nondimensional time t=800. The magnitude of 

disturbance is 2% of the freestream velocity and the 

window width is 0<y<2.5*.  

 

e 

Figure 9.  Energy spectra of u velocity fluctuations for 

a) x=60*, b) x=120*. The magnitude of disturbance is 

2% and the window width is 0<y<10*. 
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Figure 10.  Energy spectra of u velocity fluctuations for a) 

x=60*, b) x=120*. The magnitude of disturbance is 2% 

and the window width is 0<y<2.5*. 

The instantaneous flow field shows that the fine 

structures appear downstream and the oscillatory and 

breakdown of the low-speed streaks can be observed in 

the cases of high magnitude and the low magnitude with 

wide width of window function. However, as shown in 

Fig.2, in the case of the window function of 0<y<2.5*, 

the energy spectrum grows gradually. Figure 10 shows the 

energy spectra of fluctuating u velocities at x=60* and 

120* of the flow field forced with the window function of 

0<y<2.5*. As Fig.10 (b) shows, the bump peak at St=0.1 

at y=0.5* still appears at x=120*, which corresponds to 

the slower evolving of isolated spanwise-inclined vortices 

with a hairpin.  This fact suggests that there is a minimal 

characteristic structure generated from the finite amplitude 

perturbations that induces transition to turbulence. 

Hairpin-shaped vortices found by Duguet et al. (2012) 

forms above the region where streaks pinch. Optimal 

varicose perturbations grows very rapidly in a boundary 

layer. Such optimal disturbances lead to transition for 

initial energies.  The structure found in this supersonic 

boundary layer simulation is close to hairpin vortices on 

pinched streaks in incompressible boundary layers or the 

nonlinear optimum stage found by Cherubini et al. (2013).  

On the contrary, as shown in Fig. 2 (e), the wider 

window of 0<y<4 brings a few successive hairpins on the 

streaky structure, which is important for rapid evolving 

into structure breakdown.  
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Figure 11.  Energy spectra of u velocity fluctuations for a) 

x=180*, b) x=270*. The magnitude of disturbance is 2% 

and the window width is 0<y<10*. 

Figure 11 shows the energy spectra at x=180* and 

270*. The shape-factors of the velocity profile at x=180* 

and 270* and are higher and lower values than 1.5, 

respectively. As shown in Fig.11, where the straight line 

presents the power spectrum of -5/3, the energy is 

distributed in a cascade fashion at x= 270*.  

SUMMARY 

In this paper we present a few coherent minimal 

structures rapid evolving to a hairpin packet with fine 

secondary structures downstream, which is an inherent 

structure and induces transition to turbulence in the 

boundary layer. The structure is characterized spanwize-

inclined vortices and successive hairpins on the low-speed 

streak. Energy spectrum indicates the statistical feature of 

the transitional stages generated by the coherent structure. 

The spanwise wave number peak locates at  =1.0, where 

the corresponding wavelength is 2*. The Strouhal 

number defined by the displacement thickness and the 

freestream velocity indicates the corresponding wave 
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number and non-dimensional frequency at St=0.1 inside 

the boundary layer. 
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