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ABSTRACT
While hydrodynamic stability and transition to turbu-

lence in straight pipes — being one of the most fundamental
problems in fluid mechanics — has been studied extensively,
the stability of curved pipes has received less attention. In
the present work, the first (linear) instability of the canoni-
cal flow inside a toroidal pipe is investigated as a first step
in the study of the related laminar-turbulent transition pro-
cess. The impact of the curvature of the pipe, in the range
δ ∈ [0.002,1], on the stability properties of the flow is stud-
ied in the framework of linear stability analysis. Results
show that the flow is indeed modally unstable for all curva-
tures investigated and that the wave number corresponding
to the critical mode depends on the curvature, as do sev-
eral other features of this problem. The critical modes are
mainly located in the region of the Dean vortices, and are
characterised by oscillations which are symmetric or anti-
symmetric as a function of the curvature. The neutral curve
associated with the first bifurcation is the result of a complex
interaction between isolated modes and branches composed
by several modes characterised by a common structure. This
behaviour is in obvious contrast to that of straight pipes,
which are linearly stable for all Reynolds numbers.

INTRODUCTION
The study of the flow in curved pipes has been the sub-

ject of several papers over the last decades: theoretical (Dean,
1927), experimental (Ito, 1987; Kühnen et al., 2014) and nu-
merical (Di Piazza & Ciofalo, 2011; Noorani et al., 2013),
results have been presented however, a thorough analysis of
the causes and mechanisms behind hydrodynamic instability
and transition to turbulence in this flow is still missing. The
technical relevance of these flow cases is, in fact, apparent
from their prevalence in industrial applications: bent pipes
are used in heat exchangers, exhausts, links between straight
pipe sections and other devices, while the toroidal pipe is,
for example, found in nuclear reactors and tires. For a com-
prehensive review of the applications, see Vashisth et al.
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Figure 1. Geometry of the torus, showing the parameters
involved in the definition of the curvature δ = Rp/Rt .

(2008).

As a first step in the investigation of the stability of the
flow inside bent pipes, we focus on an idealised toroidal
setup. This shape, albeit rarely encountered in industrial
applications, is representative of a canonical flow and its
study is relevant in the context of the research on the onset
of turbulence since it deviates from the thoroughly studied
straight pipe by the addition of one parameter only. More-
over, the toroidal pipe constitutes the common asymptotic
limit of two important flow cases: the curved pipe and the
helical pipe.

The torus, represented schematically in figure 1, is char-
acterised by a single geometrical parameter: the curvature.
The curvature is defined as the ratio between the radius of
the pipe and that of the torus, i.e. δ = Rp/Rt ; this and the
Reynolds number (Re) are the only two parameters defining
this flow. The advantage of investigating a flow governed
only by these two parameters is that it allows to isolate the
effect that the curvature has on the onset of the instability.
It will therefore be possible, when studying helical pipes,
to discern the flow features produced by the curvature from
those produced by the torsion of the helix.
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Figure 2. Marginally stable base flow for δ = 0.3, Re = 3379. (a) Streamwise velocity component and iso-contours of in-plane
streamfunction. (b) In-plane velocity magnitude and iso-contours of streamfunction. The symbol “+” indicates the location of
the maximum of the in-plane streamfunction, corresponding to the centre of the Dean vortex.

BASE FLOW
In order to determine the stability properties of the

toroidal pipe flow, we investigate the growth of infinites-
imal disturbances around a basic state. This base flow, i.e.
the solution to the steady, incompressible Navier–Stokes
equations, has been computed by means of an in-house de-
veloped nonlinear solver based on the finite element method
(FEM). The solver employs Newton’s method to solve the
fluid equations and the secant method to impose a fixed bulk
velocity in the pipe. A zeroth order continuation method has
been employed to explore the parameter space, allowing to
use as initial guess for Newton’s method a solution computed
for a different set of the parameters. This choice, besides
reducing the number of iterations needed for convergence,
allows the computation of the solutions at high Re, where a
time stepping approach would require additional stabilisa-
tion to converge to a steady state (Åkervik et al., 2006) and
more computational resources.

The considered base flow is invariant with respect to the
axial direction, i.e. along θ , not because of simplifications
but because the steady state solution inherits the rotational
symmetry of the torus, a property which has also been con-
firmed by three-dimensional direct numerical simulation
(DNS). For the same reason the base flow is also symmetric
with respect to the equatorial plane of the torus, i.e. the plane
containing the “I/O” labels in the figures, but the compu-
tations have been made on a fully circular mesh to allow
the existence of non-symmetrical eigenmodes. The flow is
maintained in motion by a constant volume force acting in
the axial direction and defined by f = F/R, where F is a
constant determined in order to have unitary bulk velocity,
and R is the distance from the centre of the torus. The 1/R
dependence is needed in order to obtain constant forcing
along the axial direction, θ , and thus avoid artificial radial
pressure gradients. As mentioned, the secant method has
been employed to compute F ; this is because the relationship
between the force, f , and the average axial velocity inside
the torus is in general nonlinear and unknown a-priori.

The base flow is characterised, as first discovered by
Dean (1927) using a first-order expansion valid for low δ ,
by the presence of two counter-rotating vortices, so-called

Dean vortices in his honour. These two primary vortices
are present at every Re and for any value of δ (different
from zero), and are located symmetrically with respect to
the equatorial plane of the torus. The shape of the vortices
and the position of their centres depend on both Re and δ .
With increasing Re the core region of these vortices becomes
increasingly elongated until it reaches a point where it splits
into two drop-shaped vortices rotating in the same direction
and linked by a critical point in the in-plane streamfunction
field. The “splitting” of the Dean vortices takes place before
the onset of the linear instability for 0.025≤ δ ≤ 0.9 but it
is, conversely, delayed after the loss of stability of the steady
state solution for very low and very high curvatures. An
example base flow with four vortices is depicted in figure 2;
note that this base flow is in fact stable, and as such observ-
able in reality. The fact that the splitting of the Dean vortices
does not precede the loss of stability of the base flow for all
curvatures is a particularly important observation, since it
excludes the possibility that the first bifurcation may be due
or somehow related to this phenomenon.

The splitting of the vortices is not the only feature of the
base flow that depends significantly on the curvature. When
Dean first analysed this flow in 1927 he employed an approx-
imation valid for low curvatures in order to analytically solve
the Navier–Stokes equations. By using this approximation
he obtained a single non-dimensional parameter, defined as
K = 2δRe2, which was used to fully characterise the prob-
lem, and was later called Dean number. By extending the
study to non-negligible curvatures it was observed that, even
when comparing base flows at constant Dean number, the
curvature plays a primary role. In fact, starting at least from
δ = 0.25, the peak of streamwise velocity sensibly starts
moving from the outer region of the torus towards the core
of Dean’s vortices, highlighted by pluses in figure 2, and
it then jumps at the cores for δ ≈ 0.5. This is not the only
feature of the base flow that is affected by the curvature: as a
further example the magnitude of the in-plane velocity com-
ponents, the so-called secondary flow (see e.g. figure 2b), is
also greatly affected, increasing from less than 10% of the
bulk velocity for δ = 0.01 to nearly 80% for δ = 1. Other
characteristics of the base flow which are not possible to
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describe by a single scaling parameter include, but are not
limited to, the position of the core of the vortices, their afore-
mentioned splitting, and the structure of the secondary flow.
A thorough description of these features, though, goes be-
yond the scope of this paper. The examples given will suffice
to show the need to treat the curvature as a parameter with
the same relevance as the Reynolds number, an importance
which is even more evident in the stability analysis.

The study of the possible presence of multiple steady
state solutions presenting a different number of vortices,
following Yang & Keller (1986) and Daskopoulos & Lenhoff
(1989), is underway, but it appears not to be linked to the
stability properties of the currently observed steady state
solution.

MODAL STABILITY ANALYSIS
To carry out the modal stability analysis, the Navier–

Stokes equations have been linearised in the neighbourhood
of the base flow, and the perturbation fields have been ex-
panded in a Fourier series along the homogeneous θ di-
rection, introducing the wave number α . Wave numbers
between zero and two hundred have been investigated so far,
with no necessity to analyse negative wave numbers since
their spectra are the complex conjugate of the respective pos-
itive wave numbers. Note that only integer wave numbers
have been studied due to the fact that, differently from an
infinitely long helix, the ideal toroidal geometry does not
allow for solutions in the form of waves with non-integer
wave number.

A first calculation of the eigenvalues associated with
the linearised Navier–Stokes equations for δ = 0.3 and
Re = 3379 revealed the presence of a pair of complex-
conjugate, marginally stable eigenvalues. This pair of eigen-
values is characterised by a wave number α = 7, temporal
frequency |ωr|= 2.82, and indicates that the flow is undergo-
ing a Hopf bifurcation. Figure 3 shows the eigenvalue spec-
trum computed for this curvature and for a slightly higher
value of the Reynolds number; the two critical eigenvalues,
which have now become unstable, are highlighted by arrows.
From figure 3 it is possible to observe that other eigenmodes,
corresponding to different wave numbers, are close to the
unstable semi-plane. In particular, another pair of modes
associated with α = 8 and |ωr| = 3.36 has nearly crossed
the real axis and a third pair, with α = 6, |ωr|= 2.29, is not
far from becoming unstable as well. This observation will
be further explained in the following.

Figure 4a depicts the axial velocity component of the
real part of the direct eigenmode corresponding to the
marginally stable eigenvalue highlighted in figure 3. It can
be observed that this eigenfunction reaches its extremum
in the proximity of the two principal Dean vortices and its
intensity decays in the rest of the domain. This is in ac-
cordance with the fact that, as observed in experiments and
DNSs (see e.g. Kühnen et al., 2014; Di Piazza & Ciofalo,
2011), the first instability in bent pipes manifests itself by
oscillations of the two vortices. Figure 4a also shows that
the unstable mode is anti-symmetric with respect to the equa-
torial plane of the torus. This feature implies that this is a
symmetry-breaking mode and that the flow for δ = 0.3 and
Re > 3379 is characterised by anti-symmetric oscillations.
The anti-symmetry of this eigenfunction is in general accor-
dance with the observations by Di Piazza & Ciofalo (2011),
although their simulations presented an unstable, periodic
flow only for a higher Re and for a different wave number.
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Figure 3. Spectrum for δ = 0.3, Re = 3400. The pair
of critical modes is highlighted in blue and by arrows is
characterised wave number α = 7 and belongs to F3A (cf.
figure 7).
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Figure 4. Axial velocity component (a) and in-plane veloc-
ity magnitude (b), with superposed iso-contours of in-plane
streamfunction, of the real part of the marginally stable eigen-
vector for δ = 0.3, Re = 3379. A different representation of
this eigenfunction is presented in figure 8.
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Figure 5. Spectrum for δ = 0.01, Re = 4300. The pair of
critical modes is highlighted in blue and by arrows and has
wave number α = 74. It is part of the branch that consti-
tutes F4S (cf. figure 7), a family of symmetric modes. The
wave number monotonically grows along the branch with
increasing |ωr|.
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Figure 6. Streamwise velocity component (a) and in-plane
velocity magnitude (b), with superposed iso-contours of in-
plane streamfunction, of the real part of the marginally stable
eigenvector for δ = 0.01, Re = 4257.

More specifically, Di Piazza & Ciofalo (2011) presented
DNSs for two values of curvature: 0.1 and 0.3. Their results
for δ = 0.3 indicate a change from steady to periodic flow
for Re ≈ 4575, a value 35% higher than our results show;
moreover, in their simulation the flow exibits a travelling
wave characterised by wave number 8, in contrast to the
present α = 7. For δ = 0.1 they observe a periodic flow
for Re > 3800 with wave number 13 but only when starting
from a quasi-periodic flow for higher Reynolds number and
slowly decreasing Re (they observe a hysteresis which makes
it impossible to reach the periodic regime when starting from
low Re). This is, again, in contrast with our results that
present a periodic flow, with no hysteresis, for Re > 3331
and α = 17. The only feature in common between the two
sets of results is the symmetry characteristic of the oscillating
flow in the periodic regime.

The analysis carried out at this first point in the param-
eter space shows that the flow is in fact modally unstable
and suggested the study of other values of δ to completely
characterise the instability. Figure 7 summarises the results
by presenting the neutral curve in the parameter space. In the
figure, each line corresponds to the neutral curve associated
to a single pair of complex conjugate eigenmodes, tracked in
parameter space with a zeroth-order continuation algorithm.
The complete neutral curve for the flow is thus formed by
the lower envelope of the lines. The flow turns out to be
modally unstable for all curvatures investigated, and several
eigenmodes contribute to the instability. The analysis of
the critical modes revealed that three isolated modes, with
corresponding neutral curves depicted with green lines in
figure 7a, and five families of modes, depicted with black
and blue lines in figure 7a, constitute the complete neutral
curve for this flow (in the range of curvatures investigated).
The rightmost isolated mode, the critical one for δ ≥ 0.98,
is the only mode characterised by α = 0, i.e. it consists
of a stationary, pulsating mode, with a non-zero temporal
frequency. The unique characteristics of this mode can be
(easily) attributed to the singular geometrical condition en-
countered by the toroidal pipe when approaching unitary
curvature. When lowering δ the wave number of the criti-
cal mode increases non-monotonically, as it is possible to
observe from figure 7b, exceeding α = 118 for δ ≤ 0.005,
and, correspondingly, the eigenvector represents a travelling
wave. The frequency of the critical mode also changes with
δ and so does the topology of the spectrum as it is possible
to observe by comparing figures 3 and 5.

Out of the five families of modes, three are formed by
anti-symmetric eigenfunctions, and are indicated with FxA
in figure 7a, and two families contain symmetric modes,
indicated with FxS. The three isolated modes are all anti-
symmetric. The symmetry characteristic of the critical mode,
and its relationship with the curvature, could be of impor-
tance when considering the mixing of fluid inside the pipe:
an anti-symmetric mode would be more efficient than a sym-
metric mode. It remains to be seen how this property of
the eigenfunctions is affected by torsion, when consider-
ing helicoidal pipes. Modes belonging to the same family
are characterised by monotonically increasing wave number
with decreasing curvature, but step jumps are present at the
boundaries between neighbouring families and between fam-
ilies and isolated modes (highlighted by red dashed lines in
figure 7b). Continuous, if not for the fact that only discrete
wave numbers have been employed in the present analysis,
branches of eigenvalues are present for low values of δ , as
observable in figure 5 (here “continuous branches” should
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Figure 7. (a) Neutral curve of linear stability for the bent pipe in the δ −Re plane. Each line represents the neutral curve
associated with a different eigenmode, the complete neutral curve for this flow is thus formed by the envelope of the lines.
Continuous lines correspond to symmetric modes while dashed lines indicate anti-symmetric modes. The curves are not
interpolated, i.e. they are drawn employing straight segments connecting computed solutions. (b) Envelope of the wave numbers
associated with the modes forming the neutral curve. The dashed (red) lines mark the boundaries between the different families
of modes.

not be intended as branches which correspond to spatially
unbounded eigenfunctions, as encountered in boundary lay-
ers). When increasing δ these branches are “lost” amongst
the other eigenvalues constituting the spectrum, and isolated
pairs of complex conjugate eigenvalues substitute them as
critical modes.

In order to verify the correctness and relevance of the
results, a series of nonlinear DNSs have been performed for
values of the parameters just above critical. The spectral
element code nek5000 (Fischer et al., 2008) has been chosen
for this purpose; employing a fully three-dimensional mesh
of the whole torus, as to allow for travelling waves of any
wave number, and the flow has been driven at constant mass
flux, as in the setup for the linear stability analysis. At
least one DNS per isolated mode and per family has been
run with the exception, at the moment of writing, of family
F5A. First of all, the DNSs have, with excellent agreement,
confirmed the values of curvature and Reynolds number
at which the instability takes place. Moreover, the DNSs
have also shown that the nonlinear, unstable flow is affected
by periodic oscillations caused by a travelling wave with
wave number, temporal frequency and symmetry properties
corresponding to those of the critical modes resulting from
the linear stability analysis.

CONCLUSIONS
The present results rigorously show, for the first time,

that the flow in a bent pipe is indeed modally unstable, as

opposed to straight pipe flow. In fact, the linear stability
analysis reveals that the flow undergoes a Hopf bifurcation
in the whole range of investigated curvatures, and settles
onto a periodic regime. The comparison between the linear
stability analysis and the set of nonlinear DNSs aimed at
validating it, shows the reliability of the obtained results and
the relevance of the linearly-critical modes for the nonlinear
flow. The computed neutral curve highlights the complex-
ity of the first instability of this flow, not only showing the
non-triviality of the relationship between the curvature and
the Reynolds number, but also revealing a complex picture
between the identity of the critical mode, its wave number
and its symmetry properties. The computed results reveal
a new picture of the dynamics of the incompressible flow
inside bent pipes, but do not conclude the investigation. As
a first consideration, the link between a straight pipe and a
toroidal one with vanishing curvature has to be better under-
stood; moreover, now that the influence of the curvature on
the flow is clear, it is possible to investigate helical pipes,
adding the pitch of the helix as a third parameter.
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Figure 8. Eigenfunction corresponding to the marginally stable mode for δ = 0.3, Re = 3379, α = 7, belonging to F3A (cf.
figures 3, 4 and 7). On the pipe section are plotted the streamwise velocity component and contours of the in-plane streamfunction
of the corresponding base flow (cf. figure 2a). In red and blue isocontours of the radial velocity component of the eigenfunction
(for two opposite values of magnitude). It is possible to observe that the oscillations induced by this mode are mainly located in
the vicinity of the cores of the Dean vortices and that this mode is anti-symmetric with respect to the equatorial plane of the torus.
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