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ABSTRACT
Over the past decade, significant attention has been

devoted to computing and understanding the exact travel-
ing wave solutions (TWS) of the Navier-Stokes equations
(NSE). To better understand the linear and nonlinear mech-
anisms in the TWS, we consider a low-order approxima-
tion of the TWS in terms of a weighted sum of resolvent
modes. The resolvent modes represent the most amplified
forcing and response modes by the linear mechanisms in the
NSE and the weights represent the scaling influence of the
nonlinear terms. We show that only a few resolvent modes
are sufficient to capture most of the dynamics of the TWS
in channel and pipe flows. For the most energetic Fourier
modes in the wall-parallel directions, it is shown that the
first few most amplified resolvent modes capture approxi-
mately 90% of the energy of the velocity field. This illus-
trates the integral role of linear amplification mechanisms in
the NSE in shaping the wall-normal profile of the response.
In addition, we show that approximately less than 30% of
the nonlinear terms in the NSE is captured by the corre-
sponding resolvent forcing modes. Therefore, a relatively
small portion of the Reynolds-stress gradient is required for
sustaining the velocity fluctuations.

INTRODUCTION
Wall-bounded turbulent flows are dominated by coher-

ent structures which motivates the search for their low-order
decomposition and modeling. The exact TWS (e.g. Wal-
effe (2001, 2003); Wedin & Kerswell (2004); Li et al.
(2006); Willis & Kerswell (2008); Pringle et al. (2009)) of
the NSE represent attractive benchmarks for studying low-

order models of wall turbulence. This is because (i) the
TWS can be interpreted as state-space skeleton of turbu-
lence, some of which represent the edge states, i.e. small
perturbations around them drive the flow to either lam-
inar or turbulent states; and (ii) the TWS contain only
one wavespeed (the ratio between temporal frequency and
streamwise wavenumber of the fluctuations) and thus, they
are simpler solutions to the NSE relative to the full turbulent
flow.

Sharma et al. (2015) used a gain-based decomposi-
tion of the TWS in terms of a weighted sum of resolvent
modes (McKeon & Sharma, 2010) to show the low-rank
nature of representative families of TWS in both pipes and
channels, see figure 1. The pipe solutions were generated by
continuation to the bulk Reynolds number ReB = 5300 (fric-
tion Reynolds number Reτ = 106−214) from the solutions
of Pringle et al. (2009) using openpipeflow.org. They are
classified into solutions that have mirror, shift-and-reflect
and rotational symmetries (N-class) and solutions that have
only shift-and-reflect symmetry (S-class). The channel so-
lutions were generated using the code channelflow (Gibson
et al., 2008). The P1 (at Reτ = 75) and P3 (at Reτ = 85)
families are active in the core of the channel, and ap-
proach the laminar flow as Reτ increases. The P4 solu-
tions (at Reτ = 85) are highly nonlinear with fluctuations
localized near the critical layer. At high Reynolds numbers,
the importance of the critical layer mechanism becomes
clearer (e.g. Viswanath (2009); Hall & Sherwin (2010);
Deguchi & Hall (2014)). When applicable, the high-drag
(upper-branch) and low-drag (lower-branch) solutions are
respectively denoted by ‘U’ and ‘B’.

The resolvent modes represent the most amplified forc-
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ing and response modes by the linear mechanisms in the
NSE and the weights represent the scaling influence of the
nonlinear terms. For channel and pipe flows at the station-
ary steady state, the resolvent modes are independently de-
termined for each wall-parallel wavenumber pair and tem-
poral frequency. In addition, the resolvent modes are known
to admit Reynolds-number scaling (Moarref et al., 2013).
Computing the weights is more challenging since they de-
pend on the nonlinear interaction of the resolvent modes. A
brief overview of the resolvent formulation in channel flow
is provided next. The velocity field u(x,y,z, t) is decom-
posed into Fourier modes û(y,κ,ω) in the homogeneous
directions and time. Here, κ = [κx κz ] is the wavenum-
ber vector, κx and κz are the streamwise and spanwise
wavenumbers, and ω is the temporal frequency. The NSE
for the fluctuations around the mean velocity U are given by

−iωû + (U ·∇)û + (û ·∇)U + ∇p̂ − (1/Reτ )∆û = f̂
∇ · û = 0

(1)
where p is the pressure, f = −(u ·∇)u is considered as a
forcing term that drives the fluctuations, ∇ = [ iκx ∂y iκz ]

T ,
and ∆ = ∂yy− κ2

x − κ2
z . The input-output relationship be-

tween f̂ and û is governed by the resolvent operator H

û(y,κ,ω) = H(κ,ω) f̂(y,κ,ω) (2)

For any (κ,ω), a complete basis in y is determined using
the singular value decomposition of H. This decomposition
yields a set of forcing φ̂ j and response ψ̂ j resolvent modes
that are ordered by the gain σ j . For the Reynolds-stress
gradient f̂ in the direction of the forcing mode φ̂ j, the ve-
locity û will be in the direction of the response mode ψ̂ j

and amplified by the gain σ j. Here, ψ̂ j and φ̂ j are the left
and right resolvent modes. Each resolvent mode is a prop-
agating wave with streamwise speed c = ω/κx. Owing to
the integral role of c in the wall-normal localization5 and
scaling6 of the resolvent modes, it is advantageous to pa-
rameterize the modes by c instead of ω .

Using N resolvent modes, the velocity and forcing
fields are approximated as

û(y,κ,c) =
N

∑
j=1

χ j(κ,c)σ j(κ,c) ψ̂ j(y,κ,c)

f̂(y,κ,c) =
N

∑
j=1

χ j(κ,c) φ̂ j(y,κ,c)
(3)

where the weights χ j denote the projection of f̂ onto φ̂ j.
Since f is quadratic in u, the modes that directly interact
constitute triads whose weights are coupled via the interac-
tion coefficients Nli j (McKeon et al., 2013)

χl(κ,c) =
N

∑
i, j=1

∫
Nli j(κ,κ ′,c)χi(κ ′,c)χ j(κ−κ ′,c) dκ ′

(4)
The explicit computation of the weights requires project-
ing the NSE onto the known resolvent modes and solving
the resulting equations. In the present work, the weights
are determined by projecting the known velocity field from
numerically-computed TWS onto the resolvent modes.

Figure 1. Left: All invariant solutions considered in
this study, covering a range of solution classes, Reτ and
wavespeeds c. The upper set refer to the pipe solutions,
the lower set to the channel solutions. All the pipe solu-
tions are at ReB = 5300, and UB denotes the bulk veloc-
ity. Right: Fraction of energy captured by a projection
of 1,5,10 model modes (pipe) or 1,2,5 model mode pairs
(channel) per Fourier mode, for all studied solutions. Fig-
ures reproduced from Sharma et al. (2015).

APPROXIMATING TWS USING RESOLVENT
MODES

We apply Fourier transform to the velocity field from
numerically-computed exact TWS and project the Fourier
modes onto the resolvent modes that are parameterized
by the (κx, κz, c) triplet. Since the TWS contain a sin-
gle speed c, only the resolvent modes with that speed
are considered. Ten most amplified resolvent modes per
Fourier wavenumbers are considered to compute the cor-
rect weights. The nonlinear term is reconstructed using the
correctly-weighted resolvent forcing modes and compared
with the actual nonlinear term from simulations.

An overview of the pipe and channel results
from Sharma et al. (2015) is presented first. The efficacy of
the resolvent modes in capturing the velocity fluctuations of
the TWS is summarized in figure 1. We note that the fluc-
tuations’ kinetic energy is well-captured by the most am-
plified resolvent modes. For example, the most amplified
mode pair captures 84% and 59% of the fluctuations’ energy
in the P4L and P4U solutions, respectively. These numbers
are respectively 98% and 87% for the five most amplified
mode pairs. The low-order approximation of representative
TWS in pipes and channels is further illustrated in figures 2
and 3.

In the rest of the paper, we pay special attention to the
upper and lower branches of the P4 solutions; similar results
are shown in the pipe flow. Park & Graham (2015) showed
that the mean velocities of P4U and P4L are similar to the
von Kármán and Virk profiles, respectively. In addition, the
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Figure 2. The captured velocity fluctuations in the N3L solution (top row) and the N2U solution (bottom row) in a pipe. From
left to right: actual solution; projection onto the five most amplified model modes pairs per Fourier wavenumbers, projection
onto the most amplified model mode pair per Fourier wavenumbers. Figures reproduced from Sharma et al. (2015).

Figure 3. The captured velocity fluctuations (lower half shown) in the P4L solution (top row) with Reτ = 85 and c = 25uτ
and the P4U solution (bottom row) with Reτ = 85 and c = 14.2uτ . From left to right: actual solution; projection onto the five
most amplified model modes pairs per Fourier wavenumbers, projection onto the most amplified model mode pair per Fourier
wavenumbers.

normal or ‘active’ turbulent trajectory lies within a region
close to the P4U solution while the turbulent trajectory oc-
casionally escapes from this region and approaches the P4L
solution. The P4 family is computed in a periodic channel
of size Lx = πh and Lz = πh/2 (h is the channel half-width).
The wavespeed c is 25uτ in P4L and 14.2uτ in P4U where
uτ is the friction velocity.

Figure 4 summarizes the projection of the velocity fluc-
tuations and the nonlinear term in the NSE (the Reynolds-
stress gradient) onto the resolvent modes for the P4L solu-
tion. Only the Fourier modes that contain more than 1%
of the turbulent kinetic energy are shown and the corre-

sponding wall-parallel wavenumbers are indicated. Notice
that κx and κz are normalized with 1/h. Figure 4(a) shows
that the mode with κx = 0 and κz = 4 (corresponding to the
spanwise wavelength λz = Lz) dominates the velocity field.
On the other hand, figure 4(b) reveals that the norm of the
nonlinear terms is largest for κx = 2 (corresponding to the
streamwise wavelength λx = Lx) and κz = 0.

The energy percentage of the Fourier modes that is cap-
tured by the first to fifth pairs of the most amplified resol-
vent modes is shown in figure 4(c). Approximately 96% of
the dominant Fourier mode (κx = 0, κz = 4) is contained in
the first mode pair, and 99% of the second dominant mode
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(κx = 0, κz = 12) is contained in the first two pairs of re-
solvent modes. Capturing 95% of the dominant spanwise-
constant mode (κx = 2, κz = 0) requires the first five pairs
of resolvent modes.

Figure 4(d) shows the projection of the nonlinear terms
in the P4L solution onto the forcing modes. Notice that a
relatively small portion of the nonlinear terms is necessary
for sustaining the fluctuations. For example, 96% of the
dominant mode (κx = 0, κz = 4) is forced by approximately
6% of the Reynolds-stress gradient at this wavenumber pair.
Capturing the remaining 4% of the kinetic energy adds 38%
to the forcing energy (corresponding to the second to fifth
pairs of resolvent modes). In addition, the second (κx = 0,
κz = 12) and third (κx = 0, κz = 8) dominant modes require
less than 20% of the Reynolds-stress gradient u ·∇u. Note
also that the dominant forcing mode (see κx = 2 and κz =
0) results in a small contribution to the total fluctuations’
energy. The above observations illustrate that most of the
nonlinear terms cannot pass through the selective filtering
action of the high-gain linear mechanisms in the NSE.

Energy Intensities
Figure 5 shows the captured normal intensities by the

resolvent modes for the P4L and P4U solutions. The ac-
tual intensities (black curves) are compared with the same
quantities obtained using only the most amplified mode
pair per Fourier wavenumbers (blue curves) and the five
most amplified mode pairs per Fourier wavenumbers (red
curves). Notice that the five most amplified mode pairs
precisely capture the streamwise energy intensity; cf. fig-
ures 5(a) and 5(d). Also note that the most amplified
mode pair results in an streamwise intensity that peaks
around the constant critical layer where U(yc) = c; cf. fig-
ures 5(a), 5(d), 6(a), and 6(c). This is expected since the
most amplified resolvent modes are localized around the
critical layer (McKeon & Sharma, 2010).

The black curves in figures 5(b), 5(c), 5(e), and 5(f)
show that the wall-normal and spanwise intensities are ap-
proximately 50 times and 20 times smaller than the stream-
wise intensities in the P4L and P4U solutions respectively.
The blue and red curves show that the mode pairs up to the
fifth order cannot fully capture the wall-normal and span-
wise intensities. Nevertheless, we show later that the uv
and mean velocities are reasonably well-captured. The poor
representation of vv and ww can be explained by noting that
the resolvent modes are ordered based on the largest am-
plification of the kinetic energy. Consequently, the mode
shapes best represent the streamwise velocity since it con-
tains the largest portion of the energy.

Reynolds Stress and Mean Velocity
The actual mean velocity profile and the mean velocity

that the most amplified resolvent modes induce in the flow
are compared in figures 6(a) and 6(c) for the P4L and P4U
solutions respectively. The solid and dotted black curves
respectively show the actual mean velocity and the laminar
velocity for the same Reτ . The captured mean velocity by
the most amplified mode pair per Fourier wavenumbers and
the five most amplified mode pairs per Fourier wavenum-
bers are respectively shown by blue and red curves. No-
tice that the most amplified mode pair captures the depar-
ture of the mean velocity from the laminar profile and the
higher-order mode pairs further improve the reconstruction
of the mean velocity. The mean velocity of the P4L solu-

tion is well-captured by the five most amplified mode pairs
while the mean velocity of the P4U solution requires higher-
order resolvent modes. Figures 5(b) and 5(d) show the
streamwise/wall-normal Reynolds stresses. We see that the
correlation between wall-normal and streamwise fluctua-
tions is well-captured by the resolvent modes in the P4L so-
lution in spite of poor representation of the wall-normal in-
tensities. This explains accurate reconstruction of the mean
velocity by the resolvent modes.

CONCLUSIONS
It was shown that the velocity fluctuations in represen-

tative families of fully nonlinear TWS of the NSE can be
accurately captured by few most amplified resolvent modes
in both pipes and channels. This highlights the integral role
of the linear amplification mechanisms in the NSE since the
wall-normal shapes of the resolvent modes only depend on
the linear mechanisms and the mean velocity of the solu-
tion. The phase and amplitude of the modes in the full solu-
tion are reflected in the resolvent weights and represent the
scaling influence of the nonlinear feedback term u ·∇u that
drives the velocity fluctuations.

We showed that even though the nonlinear terms are
generally not fully captured by the forcing resolvent modes,
the necessary portion of the nonlinear terms from an input-
output viewpoint is well-captured. This implies that a rela-
tively small portion of the nonlinear terms can pass through
the selective filtering action of the high-gain linear mecha-
nisms in the NSE. This observation can be used to distin-
guish the ‘active’ nonlinear terms from the ‘inactive’ ones
and can have significant implications for modeling and con-
trol of wall-bounded flows.

It was shown that the large streamwise energy intensi-
ties of the considered TWS can be accurately captured by
few most amplified resolvent modes per Fourier wavenum-
bers. The streamwise/wall-normal Reynolds stress and,
consequently, the mean velocity are captured reasonably
well while the much smaller wall-normal and spanwise en-
ergy intensities are poorly captured. This is expected since
the resolvent modes are ordered based on the largest am-
plification of the kinetic energy and, thus, their shapes best
represent the streamwise velocity component.

Finally, the low-order synthesized coherent structures
from the resolvent model are anticipated to provide viable
seeds in the expensive computational search for new exact
invariant solutions, thereby reducing the computational cost
of such searches.
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Figure 5. The captured (a,d) streamwise energy intensity (b,e) wall-normal energy intensity and (c,f) spanwise energy intensity
by the most amplified pair (blue curves) and the five most amplified pairs (red curves) of resolvent modes in the P4L (top row)
and P4U (bottom row) solutions. The actual profiles from numerical simulations are shown in black.
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Figure 6. The captured (a,c) mean velocity and (b,d) streamwise/wall-normal Reynolds stress by the most amplified pair (blue
curve) and the five most amplified pairs (red curve) of resolvent modes in the P4L (top row) and P4U (bottom row) solutions.
The actual profiles from numerical simulations are shown by solid black curves. The laminar profiles are shown by dotted black
curves in (a,c). The critical layer where U(yc) = c occurs at yc = 0.55 for P4L and yc = 0.50 for P4U (green lines).
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