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ABSTRACT
Turbulent boundary layers contain a region where the

mean velocity profile is well-approximated by a logarith-

mic function. This region is often viewed as constituting

an inertial sublayer in physical space. Empirical evidences

indicate that a number of other statistical properties ex-

hibit characteristic behaviors on this inertial domain. The

present study continues the investigation of these properties

and their correlation with the self-similar structure admit-

ted by the mean dynamical equation. Particular emphases

pertain to the properties on the inertial layer, the bounds of

the domain where these characteristic properties exist, and

how these bounds compare with the analytically estimated

bounds of the inertial self-similar region.

INTRODUCTION
The statistical structure of turbulent fluctuations in

the canonical turbulent wall-flows exhibit distinctive prop-

erties in the domain where the mean velocity is well-

approximated by a logarithmic function of the wall-normal

distance. The present study is broadly concerned with the

nature of these properties, and the physical and mathemati-

cal attributes that connect them to the existence and bounds

of the logarithmic sub-domain. Key physical features are

that the domain of interest is internally positioned such that

the direct influences of either the inner or outer bound-

ary conditions diminish with increasing Reynolds number,

and concomitantly, the associated dynamics on this domain

are physically dominated by inertial momentum transport

mechanisms. Because they provide mathematically and

physically precise specifications for the onset and extent of

the inertial domain, recent analyses directed toward reveal-

ing properties admitted by the mean momentum equation

provide a cogent basis for describing and interpreting sta-

tistical structure.

Toward this purpose, this Introduction first provides

an overview of recent empirical observations that corre-

late with the onset and extent of the inertial region. It

then provides a description of an analysis framework that

is grounded in the properties inherent to the scaling struc-

ture associated with the mean momentum equation. This

framework provides a basis for interpreting experimental

observations within the context of self-similar behaviours

attributable to mean dynamical structure.

Previous Empirical Observations

The present effort builds on previously observed statis-

tical features, and their apparent correlation with the self-

similar structure of the mean momentum equation. Some

of these statistical features are associated with the onset of

the logarithmic layer, while others reflect the self-similar

nature of the turbulence on the inertial domain. Owing to

page limitations, only a subset of the measures mentioned

below are considered in the present analyses.

Beyond the position where the mean velocity profile

most rapidly approximates logarithmic dependence, indica-

tors of log layer onset include the position of the mid-layer

peak in the streamwise velocity (u) spectra, the position of

the apparent and emerging mid-layer broadband peak in the

streamwise velocity variance, 〈u2〉, the zero-crossing of the

low frequency modulation correlation function (physically

associated with the so-called ‘superstructures, e.g. Mathis

et al., 2009), and similarly, the mid-layer zero-crossing of

the streamwise velocity fluctuation skewness profile, S(u).

Two of the three measures of emerging self-similar

behaviour on the inertial domain studied by Zhou and

Klewicki (2015) are considered herein. One is associated

with the attached eddy hypothesis-based prediction that

with increasing Reynolds number, δ+, the 〈u2〉+ profile

becomes a logarithmically decreasing function of y+ over

the domain of logarithmic increasing in U+ (Marusic et al.,

2013). (Here a superscript + denotes normalization using ν
and uτ , the kinematic viscosity and friction velocity, respec-

tively, and δ is the boundary layer thickness.) Evidence of

this logarithmic dependence in 〈u2〉+ was subsequently ex-

tended and empirically supported by Meneveau and Maru-

sic (2013), and is generalized by
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Table 1. Leading order balances and layer width scalings

associated with (2). MI, TI and VF respectively denote

the mean inertia, turbulent inertia, and mean viscous force

terms in (2). Values in parentheses (third column) denote

the approximate length units for each layer.

Layer Magnitude ordering ∆y increment

I |MI| ' |VF| � |TI| O(ν/uτ) (≤ 3)

II |VF| ' |TI| � |MI| O(
√

νδ/uτ) (' 1.6)

III |MI| ' |VF| ' |TI| O(
√

νδ/uτ) (' 1.0)

IV |MI| ' |TI| � |VF| O(δ ) (→ 1)

〈(u+)2p〉+ = Dp(δ+)−Apln(y+) (1)

where p indicates the order of the even statistical moment.

Zhou and Klewicki showed that, to within data scatter, the

domain where (1) holds falls within the bounds where the

mean dynamics adhere to a self-similar structure consistent

with a logarithmic U+ profile, see below.

A second measure of inertial layer self-similarity is as-

sociated with the so-called diagnostic plot, (Alfredsson and

Orlu 2010, Alfredsson et al. 2011). Empirical observations

indicate that the plot of 〈u2〉1/2/U(y) versus U(y)/U∞ ex-

hibits a linear dependence over a region beyond the peak

in the Reynolds stress profile. Thus, it is a statistical mea-

sure of the intrinsic self-similarity between the mean ve-

locity and the streamwise velocity fluctuations. Zhou and

Klewicki (2015) found that the domain where this linear

dependence is observed closely corresponds with where the

mean momentum equation admits its self-similar form.

Elements of the Theoretical Framework
The inner-normalized mean streamwise momentum

equation for turbulent boundary layer flow in the x direc-

tion over a flat plate located at y = 0 is given by

(

U+ ∂U+

∂x+
+V + ∂U+

∂y+

)

− ∂T+

∂y+
=

∂ 2U+

∂y+2
(2)

where T+ = −〈uv〉+. From left to right, the terms in (2)

represent the the mean flow inertia (MI), the mean effect

of turbulent inertia (TI), and the mean viscous force (VF).

Each term in (2) is of leading order of some portion of the

boundary layer, but not necessarily everywhere. The lead-

ing order balances across 0 ≤ y ≤ δ have been analytically

determined (to order of magnitude), and empirically veri-

fied. These balances are summarized in table 1, (Wei et al.,

2005, Fife et al., 2009).

From table 1 note that the VF term loses leading order

at y ' 2.6
√

νδ/uτ , or equivalently at y+ ' 2.6
√

δ+. This

position marks the onset of the inertial domain. It has been

shown that the structure reflected in table 1 arises from (2)

admitting an invariant form across a hierarchy of scaling

layers that spans from y+ ' 7 to y/δ ' 0.5, e.g., Klewicki

(2013). Thus, the inertial portion of this underlying hierar-

chy resides within the bounds 2.6
√

δ+ ≤ y+ ≤ 0.5δ+.

Figure 1. Distribution of W +(y+) for channel flows. Pro-

files at δ+ = 547, 934 and 2004 are from the study of Hoyas

and Jiménez (2006). The profile at δ+ = 4073 is from Piro-

zolli (2014), and the profile at δ+ = 5186 is from Lee and

Moser (2015). Vertical lines denoting the beginning and end

of layer III are shown for δ+ = 2004.

The distribution of its layer widths, W +(y+), is a defin-

ing characteristic of the layer hierarchy. Namely, when

uτ and W (y) are used to normalize (2) this equation be-

comes invariant and parameter free. Given data uncer-

tainties, W +(y+) is most readily computed using W + =
(−∂ 2U+/∂y+2)−1/2, although other alternatives exist (Fife

et al., 2009, Klewicki, 2013). Figure 1 shows W + distri-

butions for channel flows up to δ+ ' 5200. Note that on

the domain between y+ ' 2.6
√

δ+ and the estimated upper

bound of the layer hierarchy, y/δ ≤ 0.5, dW/dy → const

= φ−1
c , while closer to the wall dW/dy 6= const. Because

(2) admits (to leading order) an invariant form on the layer

hierarchy, its solutions on this domain become increasingly

self-similar as δ+ → ∞. The function φ (Fife similarity pa-

rameter, Klewicki, 2013) is a coordinate stretching that ren-

ders solutions to (2) invariant for changes in δ+.

Two types of self-similarity are operative on the layer

hierarchy, with the simpler associated with φ approaching a

constant, φc (see figure 1). This exposes an equation-based

origin for the distance from the wall scaling that is, for ex-

ample, central to Townsend’s notion of an attached eddy,

and associated with the emergence of a logarithmic mean

profile as δ+ → ∞, Fife et al. (2009). Its location is also in

accord with the recent findings of Marusic et al. (2013) that

the onset of the inertial logarithmic layer moves to increas-

ing y+ values in proportion to
√

δ+.

RESULTS
The primary laboratory data sets used are from exper-

iments in the Flow Physics Facility (FPF) wind tunnel at

the University of New Hampshire, and the High Reynolds

Number Boundary Layer Wind Tunnel (HRNBLWT) at the

University of Melbourne. These are complemented with

data from field experiments at the Surface Layer Turbu-

lence and Environmental Science Test (SLTEST) facility in

Utah’s west desert, and other data from the literature. Dis-

tinctive attributes of the measurements used are that they ex-

tend up to high Reynolds numbers and maintain good spa-

tial resolution. The laboratory measurements were acquired

using hot-wire sensors (0.5mm long, 2.5µm diameter) that

had a length that ranged between 5 and 16 viscous units,

while the 1.0mm, 5.0µm dia. sensors used at the SLTEST

site had an inner normalized length that was always less

than 10. The present analyses focus on measures that char-
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acterize the onset and extent of, and the properties within,

the logarithmic inertial domain. These are compared with

previous measurements, and with the properties of the self-

similar inertial domain determined via analysis of (2).

Inertial Layer Properties
The iconic feature of the spatial inertial sublayer of

wall-turbulence is an inner-normalized mean velocity pro-

file that is well-approximated by

U+ =
1

κ
ln(y+)+B (3)

where κ (taken to equal 0.39) is the von Kármán constant,

and B is a constant that depends on the nature of the sur-

face – taken to equal 4.3 for the smooth-wall flows consid-

ered. Figure 2 plots the mean profiles of the eight FPF and

HRNBLWT flows listed in table 2. Following Marusic et

al. (2013), the logarithmic part of (3) is subtracted from the

data such that the inertial region of interest is represented

by a constant value equalt to B. Using this representation,

Marusic et al. found the logarithmic region to be bounded

by C1

√

δ+
99 ≤ y+ ≤C2δ+

99, where C1 ' 3.4 and C2 ' 0.19.

Overall, the present results are consistent with these find-

ings, in that they suggest that the lower boundary of the in-

ertial region scales on a length that is intermediate to ν/uτ

and δ , while the upper boundary more clearly scales on δ .

Like the results reported by Vincenti et al. (2013), the data

of figure 2 are not of sufficient fidelity to unambiguously

locate the inertial layer onset. Here we also note that the

previous data seem to indicate that the data approach the

constant plateau from above a low δ+ and from below at

high δ+, and thus this feature also complicates the precise

identification of the beginning of the logarithmic layer using

this method.

Because it relates to the turbulent fluctuations, (1) is

likely to be a more sensitive measure of the spatial posi-

tion of the inertial domain. With this in mind, the present

new measurements from the FPF and HRNBLWT were an-

alyzed in same way that Zhou and Klewicki (2015) treated

the earlier 1.0mm sensor FPF measurements of Vincenti et

y+
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−
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1
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+
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Figure 2. Deviation of the measured mean velocity pro-

file from the logarithmic line. Here a value of κ = 0.39

was used. The horizontal line denotes a value of 4.3. Per

the analyses of Marusic et al. (2103), the green and red cir-

cles show the locations corresponding to y+ = 2.6
√

δ+ and

y+ = 0.15δ+, respectively.

Table 2. Slope coefficients, Ap, of the even moment curve

fits for 2058≤ δ+ ≤ 12701. Bold face δ+ are from the FPF,

others are from the HRNBLWT.

δ+ A1 A2 A3 A4 A5

2058 -1.03 -1.61 -2.07 -2.42 -2.70

3771 -1.28 -1.94 -2.41 -2.70 -2.88

4997 -1.32 -2.05 -2.63 -3.09 -3.45

5704 -1.18 -1.83 -2.36 -2.80 -3.16

7584 -1.37 -2.18 -2.87 -3.47 -4.00

8162 -1.25 -1.93 -2.49 -2.92 -3.24

10102 -1.29 -2.02 -2.60 -3.04 -3.35

12701 -1.34 -2.13 -2.78 -3.29 -3.68

Average -1.26 -1.96 -2.53 -2.97 -3.31

al. (2013). This analysis generally adhered to the proce-

dure described by Meneveau and Marusic (2013). Here the

profiles of the even moments of the u fluctuations (up to

tenth moment) were computed, and a logarithmic line was

fit to the data in the outer region of decreasing moment mag-

nitude. Different from Meneveau and Marusic, however,

the present data were fit over the domain 2.6
√

δ+ ≤ y+ ≤
0.3δ+, as in the analysis of Zhou and Klewicki.

The results of figure 3 demonstrate this process at

δ+ ' 8000 measurements from the FPF and HRNBLWT,

while the entries in table 2 summarize the overall results

of the analysis. The results for the Ap in the table are in

good agreement with of Meneveau and Marusic and Zhou

and Klewicki. For example, the present data yield an aver-

age value for A1 = 1.26. This is very close to the value of

1.27 reported by Zhou and Klewicki, and is identical to the

value found by Meneveau and Marusic. It is interesting to

note, however, that the results from table 2 seem to suggest

that at comparable Reynolds numbers, the slope magnitudes

from the FPF are slightly larger than those derirved from

the HRNBLWT. As exemplified by the results in figure 3,

the data from the FPF exhibit slightly greater scatter than

those from the HRNBLWT. This is primarily attributable

to larger non-dimensional averaging time afforded by the

HRNBLWT experiments. Figure 3 also exemplifies and re-

inforces the general finding of Zhou and Klewicki that the

region of most convincing logarithmic decrease lies within

the theoretical bounds of 2.6
√

δ+ ≤ y+ ≤ 0.5δ+. Overall,

examination of the individual curves underlying the results

of table 2 indicates that with increasing δ+ the data begin

their logarithmic decrease at a position that increasingly ap-

proaches the position where the VF term in (2) loses leading

order, i.e., at the outer edge of layer III, see table 1. Sim-

ilarly, at any fixed δ+, this same lower limit seems to be

approached with increasing moment.

The mean momentum equation based analysis men-

tioned in the Introduction support the assertion that the

properties of the inertial logarithmic region derive from an

underlying self-similar structure. Empirical observations

of the outer region behavior of the diagnostic plot of Al-

fredsson and Orlu (2010) are consistent with this. Specif-

ically, the (approximately) invariant linear region of diag-

nostic plot reflects a self-similar relationship between the

mean velocity and the fluctuations about this mean.

Figure 4 presents the modified diagnostic plot of the

FPF and HRNBLWT data of table 2. As is apparent, the
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Figure 3. Even statistical moment profiles (2p = 2, 4, 6,

8, 10) of u time-series at δ+ = 7584 (top) and δ+ = 8162

(bottom). Profile at δ+ = 7584 is from the FPF and the

profile at δ+ = 8162 is from the HRNBLWT. Solid lines

represent average values in table 2. Filled symbols reside

between y+ ' 2.6
√

δ+ and y/δ ' 0.3.

data from the two facilities exhibit a compelling level of

agreement, and interestingly, close examination reveals all

of the profiles exhibit a noticeable deviation from purely

linear behaviour; suggesting that the linear behaviour is

an approximation, while the self-similarity is robust. The

linear region fit derived from the present data, u′/U =
−0.269(U/U∞) + 0.296, is in very good, but not identi-

cal, agreement with the earlier fits given by Alfredsson et

al. (2011) and Zhou and Klewicki (2013). Somewhat dis-

tinct from the results of Zhou and Klewicki, the present

results also suggest that the linear approximation begins a

little before y+ = 2.6
√

δ+, and ends a little beyond y+ =
0.5δ+. These bounds are indicated by the red-filled data

points in figure 4. A potential explanation for this obser-

vation is that both u′ and U deviate from the their charac-

teristic behavior on the inertial domain such that their ratio

continues to adhere (approximately) to a straight line even

beyond the bounds of self-similar domain indicated by the

theory. More generally, upon examining the diagnostic plot

for a significant number of profiles, it seems apparent that

while its invariance is clearly robust, it is not a particularly

sensitive measure of wall-turbulence structure.

Inertial Layer Onset
The results presented thus far provide relatively clear

evidence that the upper bound of the inertial logarithmic re-

gion scales with δ+. The evidence that the lower boundary

scales with
√

δ+ is, however, more ambiguous. As men-

tioned in the Introduction, previous observations suggest

U/U∞

u
′ /

U

0.4 0.6 0.8 1
0

0.1

0.2

Figure 4. Modified diagnostic plot of the experiments rep-

resented in table 2. The black line represents the average

linear fit of the data from all of the profiles between 0.65 ≤
U/U∞ ≤ 0.85; u′/U = −0.269(U/U∞) + 0.296; prime de-

notes the rms. The green and red circles show the locations

corresponding to y+ = 2.6
√

δ+ and y+ = 0.5δ+, respec-

tively.

that a number of statistics are either associated through the

theory with the inertial layer, or have been shown to corre-

late with this onset. Such statistics are now examined.

The evidence for the emergence (with increasing δ+)

of a mid-layer (“outer”) peak in the pre-multiplied spectro-

grams of u is well-established, e.g., Hutchins and Marusic

(2007). Furthermore, while existing evidence indicates that

the y+ position of this peak nominally scales with
√

δ+, the

spatial breadth of this spectral region makes its precise es-

timation difficult, e.g., Vincenti et al. (2013). Similarly, the

evidence pertaining to whether this spectral peak underlies

the emergence of a mid-layer peak in the broadband statis-

tic, 〈u2〉+, remains ambiguous. In either case, however, it is

readily surmised that the position of any broadband plateau

or peak, must reside just interior to the region of logarithmic

decrease depicted in figure 3.

The measurements by Vincenti et al. (2013) between

6000 ≤ δ+ ≤ 20000 provide evidence in support of a de-

veloping 〈u2〉+ peak. Similarly, while exhibiting more scat-

ter, SLTEST facility based field measurements from the

study of Priyadarshana and Klewicki (2004) also suggest

the emergence of a peak in 〈u2〉+. To investigate the δ+

scaling associated with the location of this peak, figure

5 plots 〈u2〉+ versus y+/
√

δ+ from the present FPF and

HRNBLWT experiments, along with representative profiles

δ+ > 6000 from Vincenti et al. (2013), as well as mea-

surements from the SLTEST site. A number of features

are apparent on the plot. It is firstly clear that the labo-

ratory data at most provide relatively subtle evidence of a

peak near y+/
√

δ+ = 2.6 (also see figure 3), while, even

given their scatter, the SLTEST data are much more sug-

gestive of a peak. Secondly, regardless of the existence

of an identifiable peak, the data in the peak (plateau) re-

gion convincingly align under the y+/
√

δ+ scaling. Lastly,

in accord with the profiles of figure 2, these data indicate

that the logarithmic decrease reflected in (1) begins slightly

beyond y+ ' 2.6
√

δ+. Quantifications of the spectral and

broadband peak are included in the compilation of figure 6.

These include the estimated locations from the FPF (Vin-

centi et al., 2013), and from the SLTEST facility (Priyadar-

shana and Klewicki, 2004; Metzger et al., 2007).

Figure 6 provides a summary of quantities that corre-

late with the transition from a mean dynamical balance in
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Figure 5. Streamwise velocity variance profiles plotted

versus y+/
√

δ+. Red symbols are from the the present

HRNBLWT study. Blue symbols are from the present FPF

study and Vincenti et al. (2013). The green symbols are

from the SLTEST facility; near-wall, Metzger and Klewicki

(2001), mid-layer, Priyadarshana and Klewicki (2004).

which the VF term in (2) is leading order to one in which the

leading order terms are wholly inertial. As reflected in table

1, the wall-normal location, y+
m , of the peak in −〈uv〉+ must

occur within the bounds of layer III. Because of this, y+
m

provides a convenient surrogate for the point at which the

transition to inertial dynamics occurs (Mehdi et al. 2013).

As described by Chin et al. (2014), and shown in figure 6,

the DNS of Chin (2011) and the Princeton Superpipe mea-

surements of Hultmark et al. (2013) closely adhere to the

theoretically predicted behavior, with the curve fit of data

up to δ+ ' 1×105 given by y+
m = 1.77

√
δ+.

Based upon the physical recognition that the TI term

changes from a momentum source to momentum sink

across layer III, Klewicki et al. (2007) surmised that, inde-

pendent of Reynolds number, the domain of the inner/outer

interaction in the boundary layer on average contains layer

III. Relevant to this, Mathis et al. (2009) quantified the cor-

relation coefficient, R(y+), profile associated with the mod-

ulation of the near-wall flow by the inertial layer motions,

and subsequent studies have shown that the skewness of the

u fluctuations, S(u), is closely related to R (e.g., Mathis et

al., 2012; Subrahmanyam and McKeon 2015). In particular,

the zero-crossing of either R or S(u) is seen to coincide (on

average) with the inertially dominated motions nearest the

wall, and thus is physically associated with the transition

to inertially dominated mean dynamics. Results in figure 6

include zero-crossing data for both R and S(u). These data

come from the FPF measurements of Vincenti et al. (2013),

the study of Mathis et al. (2009), FPF and HRNBLWT ex-

periments of table 2, as well as SLTEST facility measure-

ments (Klewicki et al., 2005; Priyadarshana and Klewicki,

2004). Relative to the R data, the δ+ value has been ad-

justed to reflect δ99, and thus be consistent with the rest of

the data on the plot. Overall, these data indicate that the

zero-crossing occurs near to, or possibly just slightly be-

yond, y+ = 2.6
√

δ+.

The recent extension of the present theory to rough-

wall flows by Mehdi et al. (2013) provides a means to fur-

ther examine the S(u) zero-crossing as a measure of the

start of the inertial domain. Here we first note that, in con-

trast to prevalent thinking, data covering significant ranges

in δ+ and k+
s reveal that the mean viscous force generi-

cally retains importance above (and often well-above) the

roughness crests. Concomitantly, the leading order layer

II, III and IV force balance structure described in table 1

is preserved in rough-wall flows. As with the overall dy-

namical structure, the transition to inertial mean dynamics

now depends non-trivially on the combined influences of

roughness and Reynolds number. The property that ym al-

ways resides within layer III is, however, preserved. This

allows ym to be used as a surrogate for the transition to in-

ertial mean dynamics. Accordingly, Mehdi et al. (2013)

quantified (via empirical curve-fits) the dependence of ym

on the relative scale separations between the inner, rough-

ness, and outer length scales, and used these as a way to

demonstrate connections between a number of rough-wall

flow features to those in smooth-wall flow. Following this

approach, figure 7 presents recently acquired smooth- and

rough-wall S(u) zero-crossing measurements from a suite of

HRNBLWT experiments covering 3000 < δ+ < 30000 and

equivalent sand grain roughnesses covering 23 < k+
s < 150.

The results of figure 6 show that the S(u) zero-crossing

consistently occurs somewhat beyond ym, and consistent

with this, the results of figure 7 indicate that the measured

zero-crossing position nominally correlates with the posi-

tion equal to 2.3y+
m .

CONCLUSIONS

The present study investigated statistical properties of

the flow within the inertial sublayer of the turbulent bound-

ary layer, as well as measures of the (approximate) begin-

ning and end points of this inertial domain. These results

were compared to, and described within the context of, a

description of this inertial domain as developed from con-

sideration of the invariance properties associated with the

mean momentum equation. The upper and lower bounds

for the inertial domain developed through the theory are

y+≥ 2.6
√

δ+ and y/δ ≤ 0.5. Comparisons of the empirical

measures investigated with this domain specification gener-

ally indicate good correlation. It would seem, however, that

the quality of the agreement depends upon the sensitivity of

the particular statistic to the underlying self-similar struc-

ture. That is, some measures, such as the logarithmic de-

crease in the even moments of u exhibit their characteristic

property wholly within the analytical bounds, while others,

such as the linear region in the diagnostic plot, provide ev-

idence of extending slightly before and beyond the analyti-

cally estimated bounds. Of course, finite Reynolds number

and data uncertainties also factor into these considerations.

A number of measures were used to separately estimate

the onset of the inertial domain. These exhibit very good

agreement with the position y+ ' 2.6
√

δ+.
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