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ABSTRACT
This paper presents the development towards wall

adaptive explicit filters for the simulation of turbulent wall
bounded flows in the framework of the lattice Boltzmann
method (LBM). First, we show the effect of different colli-
sion models on the characteristics of turbulent flow simula-
tions by employing the Taylor-Green vortex as a numerical
testcase. Second, an extension of the approximate decon-
volution method (ADM), see Malaspinas & Sagaut (2012),
Malaspinas & Sagaut (2011) and Sagaut (2010) for the sim-
ulation of wall-bounded turbulent flows is presented. A
temporal dissipation relaxation is applied for explicit filter-
ing, in order to suppress filtering in regions, where the flow
is resolved and to adapt filtering in underresolved regions
in such way, that the energy drain in the scales is physically
motivated and consistent with the kinetic theory of turbu-
lence. We apply the extended ADM for the simulation of
a turbulent channel flow at Reτ = 180 and Reτ = 395 to
demonstrate, that the ADM method of Malaspinas & Sagaut
(2011) with selective viscosity filters is strictly dissipative
for low-order filters. Hence, especially for wall-bounded
flows the application of the proposed adaptive relaxation of
the filter can be beneficial.

The lattice-Boltzmann method
LBM solves a set of kinetic equations in terms of dis-

crete velocity distribution functions fα (t,xxx) numerically.
The discrete Boltzmann equations can be written as

fα (t +∆t,xxx+ cccα ∆t) = fα (t,xxx)+Ωα ( fα (t,xxx)) (1)

where Ωα ( fα (t,xxx)) is the collision operator, which repre-
sents non-linear and viscous effects of the Navier Stokes
equations and cccα is the discrete velocity set of the lattice
applied. Macroscopic moments are reconstructed with a
Gauss-Hermite quadrature based on the Hermite Polyno-
mial expansion on a discrete lattice. The first two moments
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of the velocity distribution functions are the conserved mo-
ments ρ and the momentum ρuuu, which read

ρ = ∑
α

fα , ρuuu = ∑
α

cccα fα (2)

while the momentum flux is the second-order off-
equilibrium moment of the velocity distribution functions

ΠΠΠ = ∑
α

f neq
α cccα cccα (3)

In order to reconstruct the macroscopic equations of
fluid motion, a Chapman Enskog expansion is used. The
interested reader can refer to Chen & Doolen (1998) among
others.

To close equation (1) the collision term needs to be
modeled. One well-known approach is the linearization
around small perturbations of the thermodynamic equilib-
rium. This approach is called the Bhatnagar-Gross-Krook
(BGK) ansatz, see He & Luo (1997); Guo et al. (2000);
Guo & Shu (2013) or Sukop & Thorne (2006) among oth-
ers, which represents the collision term as a linear relaxation
towards a maxwellian equilibrium

Ωα ( fα (t,xxx)) = fα (t +∆t,xxx+ cccα ∆t)− fα (t,xxx)

=−1
τ
(

fα (t,xxx)− f eq
α (t,xxx)

)
.

(4)

f eq
α (t,xxx) is a low Mach number truncated Maxwell-

Boltzmann distribution, which is adjusted in such a way,
that equation (3) is fulfilled and mass and momentum are
conserved. A widely used formulation for f eq

α is given by

f eq
α = ρωα

[
1+

cccα uuu
c2

s
+

1
2c4

s
(uuuuuu− c2

s δδδ )uuuuuu
]
. (5)

ωα are the weights to satisfy the exact Gauss-Hermite
quadrature of the lattice, cs is the lattice speed of sound and
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δδδ is the Kronecker delta. Although, the BGK approach has
been applied to many flow problems, see Hänel (2004) and
Waldrow (2000), it has been found to suffer from instabil-
ities at high Reynolds numbers, which have its origins in
unphysical moments of fα . To remedy this shortcoming,
the Multi-Relaxation-Time (MRT) scheme was developed
by D’Humiéres et al. (2002). The main idea is to trans-
form the collision step into the momentum space and to re-
lax each moment separately in order to reduce the instabil-
ities arising from the temporal growth of these unphysical
moments. Thus, the single relaxation time from the BGK
model is replaced by a relaxation time matrix SSS, which re-
laxes each moment mα = MMM fα independently. The matrix
MMM is a linear transformation matrix and the corresponding
algorithm for the MRT scheme reads

fα (t +∆t,xxx+ cccα ∆t)− fα (t,xxx)

=−MMM−1SSS(mα (t,xxx)−meq
α (t,xxx))

(6)

The MRT model increases the stability of the LBM method
substantially. Yet, e.g. due to inconsistent derivation of
boundary conditions for stresses on domain boundaries,
where velocities are prescribed, instabilities arise in the
MRT model for Reynolds numbers larger than approx. 5000
for three dimensional flows, see Freitas et al. (2011). In or-
der to suppress these exponentially growing disturbances,
Latt (see Latt & Chopard (2006) and Latt (2007)) proposed
a regularization of the classical BGK algorithm, employ-
ing an approximation of the first-order multiscale expansion
term

f neq
α = fα − f eq

α ≈ f (1)α =− ∆t
ωc2

s
ωα QQQα ∂iρuuu. (7)

Here, QQQα is the first-order non equilibrium moment QQQα =

∑cccccc f neq
α . The non-equilibrium distribution function f neq

α
is used to approximate the first-order multiscale expansion
term. This term is included in the BGK model, thus the
regularized BGK algorithm reads

fα (t +∆t,xxx+ cccα ∆t) = fα (t,xxx)+(1−ω) f (1)α (t,xxx) (8)

This regularization operation is not only necessary for the
flow field, but also for the boundaries. The main issue with
respect to boundary conditions in the RLB is the proper re-
construction of the unknown distribution functions propa-
gating into the flow domain. Since for the regularization
the discrete velocity information is needed, a proper ap-
proximation of the non-equilibrium part f (1)α in equation
(7) is required. Different approaches to model f (1)α at do-
main boundaries are proposed in Latt (2007) and Latt et al.
(2008). In the present investigation the interpolated bound-
ary approximation of the strain rate is considered for wall-
bounded flows only.

The approximate deconvolution method
(ADM) for LBM

The turbulence model investigated in this paper, which
is adapted for wall-bounded flows, is the approximate de-
convolution method (ADM) of Stolz & Adams (1999),

Adams & Stolz (2002) and Stolz et al. (2001). The concept
of ADM is a generalization of the scale-similarity model
for Large-Eddy simulation based subgrid-scale models. The
consecutive steps of explicit filtering and subsequent decon-
volution of the macroscopic equations for fluid motions was
adopted by Sagaut (2010) and Malaspinas & Sagaut (2011)
in the LBM framework using a selective viscosity filter, see
Tam et al. (1993). Applying a homogeneous low-pass filter
kernel G on equation (1) one receives

D fα (t,xxx)
Dt

= Ωα ( fα (t,xxx)) (9)

which is equal to

D fα (t,xxx)
Dt

−Ωα ( f α (t,xxx))

= G∗Ωα ( fα (t,xxx))−Ωα ( f α (t,xxx)) = σsgs

(10)

where σsgs is the subgrid stress term emerging from the
discrepancy between exact convolution and computabale
terms. In general two approaches are followed at this point,
which can be easily shown by re-writing the right-hand side
of equation (10) as

[
G∗Ωα ( f̂α (t,xxx))−Ωα ( f α (t,xxx))

]

+
[
G∗Ωα ( fα (t,xxx))−Ωα ( f̂α (t,xxx))

]

= σsgs = σ1
sgs +σ2

sgs

(11)

where σ1
sgs is the known term and σ2

sgs is the unknown term
which needs to be modeled and f̂α (t,xxx)) is the approximate
deconvolution of the distribution function. At this point ei-
ther the term σ2

sgs is modeled as demonstrated in Sagaut
(2010) and Malaspinas & Sagaut (2011), or the simplified
version of Stolz, Adams and additionally Mathew Mathew
et al. (2003), is applied where the exact distribution function
is replaced by it’s approximate inverse G ∗Ωα ( fα (t,xxx)) ≈
G ∗Ωα ( f̂α (t,xxx)). This simplification is valid for f̂α ≈ f α
and has a tremendious effect on the required filter proper-
ties, since the discretization scheme in LBM is fixed and
thus the ADM-LES approach itself is decoupled from the
filter operation in the LBM framework. In earlier work,
see Pruett & Adams (2000), the authors showed that indeed
the underlying LES model cannot be chosen independently
from the applied filter. Thus, if the filter operation is decou-
pled from our discretization scheme and the subgrid-scale
model, the filter procedure can be adjsuted in such way to
act only on the scales intended. Using the simplified proce-
dure, equation (11) reduces to

D fα (t,xxx)
Dt

−Ωα ( f α (t,xxx))

= G∗Ωα ( f̂α (t,xxx))−Ωα ( f α (t,xxx)) = σ1
sgs.

(12)

The simplified approach given in equation (12) is the un-
derlying approach in the current investigation. An inverse
filter operation is performed with a deconvolution operator
φ̂ = G−1 ∗φ = Q∗φ . The quality of an inverse filter opera-
tion is described with the transfer function Ĝ(ξ ) in spectral
space, where ξ is the wavenumber. In the work of Stolz

2



& Adams (1999), Adams & Stolz (2002) and Stolz et al.
(2001), a Padé filter was applied and the deconvoluted so-
lution is obtained by the Van Cittert iterative method. The
authors showed, that a high-order deconvolution can be pro-
vided up to the cut-off wavenumber of the applied filter.
Sagaut (2010) and Malaspinas & Sagaut (2011) used a class
of selective viscosity filters up to order N = 4. In Tam et al.
(1993), the stencil properties were derived and compared to
each other. These filters damp high-wavenumber parts of
an arbitrary signal, employing a damping approach, which
reads

f̂ out
α (t,xxx) = f in

α (t,xxx)−σ
j

∑
n=− j

dn f in
α (t,xxx+ ein) (13)

where the filter strength σ is related to an artifical viscosity
and dn is the weighting coefficient. In figure 1
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Figure 1: Transfer functions of the filters used by
Malaspinas & Sagaut (2011) for the ADM N = 1..4
and an additional high-order viscosity filter N = 7
from Tam et al. (1993). The wavenumber is normal-
ized with the Nyquist wavenumber ξN

the filters used for ADM by Malaspinas & Sagaut
(2011) are shown in terms of the transfer function. It is vis-
ible, that even for the highest orders of the viscosity filters,
the damping is quite strong. Hence, the underlying assump-
tion f̂α ≈ f α for applying an explicit filter shown in fig-
ure 1 in the framework of the simplified procedure is ques-
tionable. A very high filter stencil is necessary in order to
be consistent with the underlying assumptions made in this
context. This is not desirable for the LBM, since it’s algo-
rithm is executed locally and any non-local operation drains
the computational efficiency dramatically. Especially, if one
considers an inverse convolution of each discrete lattice ve-
locity would render the LBM algorithm inappropriate for
flow problems.

From a computational point of view, we focus on the
deconvolution of the macroscopic moments and aim to
modify the strength of the filter σ as a function of space and
time σ(xxx, t) instead of leaving it constant. Thus, we cannot
increase the order, and subsequently the steepness of the
transferfunction, but the scales on which the filter operation
will be applied. Therefore we aim to develop a selective

viscosity filter, where the filter strength is adjusted in such
way, that even low filter orders operate on large wavenum-
ber only scales and thus f̂α ≈ f α is satisfied. With this
approach, filtering is adopted to the mesh resolution auto-
matically in terms of the resolved scales.

Our approach is based on the idea of the shear-
improved Smagorinsky model of Lèveque et al. (2007).
This model is based on the idea, that resolved turbulent
scales in terms of the resolved strain-rate relax towards an
average strain-rate and thus the fluctuating part of the strain-
rate is significant at scales of filter size ∆x. In flow regions,
where the fluctuating part of the strain-rate is larger than the
average strain rate, the turbulent flow can be considered as
homogeneous and the standard Smagorinsky model is re-
constructed. This approach was adopted earlier by Jafari &
Rahnama (2011) for the MRT-based lattice Boltzmann, but
the application was only limited to low Reynolds numbers.
Also as shown by Malaspinas & Sagaut (2012), the modi-
fication of the effective relaxation rate does not inevitably
lead to the filtered equations of fluid motions, namely the
filtered Navier-Stokes equations. We apply a relaxation of
the filter strength in terms of the temporal averaged resolved
strain-rate. Without loss of generalization, a temporal aver-
aging procedure is used since in statistically steady flows,
like the converged turbulent channel flow, the efficiency in-
creases (local operation), the spatial averaged statistics are
reconstructed as well (ergodic system) and it is also suitable
for the application to complex flows, with arbitrary flow
seperations. The filter strength is computed as

σ(t,xxx) =
(|S|i j(t,xxx)−

〈
|S|i j(xxx)

〉
)∆t

(ρ + 〈δρ〉)
ν
2

(
ω
c2

s

)2
(14)

where
〈
|S|i j

〉
is the time averaged resolved strain-rate and

∆t the physical time step. Averaging is perfomed as soon as
the flows achieves a statistically steady state in terms of an
autocorrelation function.

η =
〈ux(xxx, t)ux(xxx, t + τ)〉
〈ux(xxx, t)ux(xxx, t)〉

(15)

For flows with strong unsteady effects as they appear in
external aerodynamics, a phase-averging procedure is the
straight forward extension of this adaptive explicit filter-
ing step. Despite the fact, that a time correlation needs to
be estimated, the computational costs are very low com-
pared with other approaches like the dynamic Smagorinsky
model. Although we have a non-local filter approach, which
reduces the computational efficiency, this approach is con-
sistent with the macroscopic limit of the filtered equations
of fluid motion. The filter-subgrid-scale model coupling
and no loss of generalization in terms of Reynolds number
and mesh requirements is present.

Beyond this, any amplification of unphysical moments
are suppressed, since non-physical strain rates are only lo-
cally apparent and damped by our temporal adapted explicit
filtering step. It is worth to mention, that the amplifica-
tion of unphysical moments in terms of the strain-rate lead
to an overpredicted eddy-viscosity for standard approaches
in the LBM framework since the strain-rate and thus the
non-equilibrium part of the velocity distribution function
is directly linked to the turbulent relaxation time. This is
a promising step towards BGK based simulation for high
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Reynolds number flows where the stabilization is consistent
with a physically motivated energy drain.

Analysis of the discrete lattice schemes for
the simulation of turbulent flows

In order to investigate the properties of the differ-
ent collision models, we employ the well-known Taylor-
Green vortex and analyze the intergral dissipation rate.
It will be outlined, why the BGK collision model is our
model of choice. Prior analysis showed, that the BGK and
MRT model have a oppositioned behavior: While the BGK
scheme tends to be unstable if the Reynolds number is in-
creased at a fixed mesh resolution, the MRT scheme showed
no mesh convergence at a fixed mach number if the mesh
resolution is increased at a fixed Reynolds number. This is
exemplified for the Reynolds number Re = 3000 and two
different mesh resolutions, N = 64 and N = 256, in figure
2.
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Figure 2: Temporal evolution of the dissipation rate of
the Taylor-Green vortex predicted by the BGK, MRT
and RLB scheme at Re= 3000 for the resolutions N =
64 and 256.

While the BGK scheme diverged for the lowest res-
olution which corresponds to the findings of others, see
Lallemand & Luo (2000) and He & Luo (1997), the MRT

scheme showed no convergence if the mesh resolution was
increased to N = 256.

Beyond this, it was found that the RLB collision model
is unconditionally stable at all resolutions and Reynolds
numbers, but it suffers from a rather strong additional nu-
merical viscosity. In order to represent the same range of
turbulent scales for a given Reynolds number with the RLB
scheme, additional computational effort has to be taken into
account in terms of an increased resolution.

Based on these investigations, the BGK collision
model was chosen for all further investigations, since
mesh convergence was proven and the instabilities at high
Reynolds numbers and low resolutions can be damped by
our new model.

The turbulent channel flow
The aim of this work is to provide an extension of the

ADM in the framework of the LBM. The model should
adapt automatically the filtering strength to the local re-
solved scales. In regions where turbulence is resolved,
filtering is suppressed by an energy drain balance, while
in regions where the flow is underresolved, explicit filter-
ing is adapted in such way, that the energy drain caused
by filtering corresponds to a physically motivated viscosity
model. The test case chosen is based on the work of Be-
spalko (2011). The domain had the extensions of Lx = 12H,
Ly = 4H and Lz = 2H for the streamwise, lateral and wall
normal direction respectively, where H is the channel half
width. In streamwise and lateral direction, periodic bound-
ary conditions were applied. Constant forcing in stream-
wise direction was applied as in Bespalko (2011). At the
bottom and the top of the domain a halfway bounce-back
rule, combined with a non-linear finite-difference regular-
ization was applied, see Latt et al. (2008). In order to inves-
tigate the general sensitivity of the ADM for wall-bounded
flows, we first apply the ADM with different filter sten-
cils (2nd and 3rd order) and filter strengths (σ = 0.001 and
σ = 0.005) to the turbulent channel flow at Reτ = 180. This
is the smallest Reynolds numbers for turbulent scales in a
turbulent channel flow. DNS reference data is taken from
Kim et al. (1987) and Moser et al. (1999). In figure 3 the
influence of the pure filtering on the turbulent velocity field
is shown.
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Figure 3: Mean velocity profiles of turbulent channel
flow at Reτ = 180. Comparison of reference DNS
of Kim et al. (1987) to the underresolved simulations
with the BGK-based ADM model.
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As it is clearly recognizable, the influence of the or-
der of the filter is inferior to the applied filter strength, since
the difference in the predicted velocity profiles by the BGK-
based ADM is rather small for the lower filter strength com-
pared with the DNS data. For the higher filter strength
both filters underpredict velocity field, especially in the log-
region of the flow. In previous investigations, it has been
shown that the BGK model without any turbulence model
has a good agreement with the DNS data for y+ < 30, but
in the bulk regions the average flow field was overpredicted.
In the current study, the influence of explicit filtering leads
a ”shift-down” of the average velocity field, which indicates
the necessity of selective filtering. This ”shift-down” is
also marginally influenced by the constant forcing as shown
later.

The proposed model should filter mainly in the bulk re-
gion, while the wall-nearest region should be unaffected by
the filtering procedure. The Reynolds numbers Reτ = 185
and Reτ = 395 were investigated with the adaptive ADM,
at two resolutions N = 31 and N = 71.
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Figure 4: Mean velocity profiles of turbulent channel
flow at Reτ = 180. Comparison of reference DNS
of Kim et al. (1987) to the underresolved simulations
with the BGK-based adaptive ADM model.

In figure 4 the averaged velocity profiles for Reτ = 180,
predicted by the adaptive ADM model is presented and
compared to the DNS of Kim et al. (1987). The setup with
N = 31 cells per half-width is underresolved since ∆y+ ≈ 6.
Due to the applied bounce-back rule, the first fluid node is at
∆y+ ≈ 3. Nevertheless, the log-law region of the flow was
predicted very well and only in vicinity of the wall the ve-
locity was slightly overpredicted. Increasing the resolution
to N = 71 cells did not influence the results significantly.
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Figure 5: Mean velocity profiles of turbulent channel
flow at Reτ = 395. Comparison of reference DNS of
Moser et al. (1999) to the underresolved simulations
with the BGK-based adaptive ADM model.

In figure 5 the results for Reτ = 395 when employing
the adaptive ADM are shown, for two resolutions of the
channel half-width N = 31 and N = 71, which corresponds
to a normalized resolution of ∆y+ ≈ 12.8 and ∆y+ ≈ 5.6 re-
spectively. It is visible, that for the lower resolution N = 31
the velocity is generally underpredicted compared to the
reference DNS data, while the results for the higher reso-
lution are in good agreement with the DNS for y+ < 30.
Although for N = 71 the log-law region is slightly under-
predicted as well, the adaptive nature of the filtering can be
recognized. While the wall nearest region is unaffected by
filtering, the scales in the bulk flow are underpredicted and
thus, the filter step has an influence on the flow field in the
log-law. The bulk flow is underpredicted by both resolu-
tions in the same order of magnitude and it appears, that the
constant forcing approach used here is not suitable for the
adaptive ADM. Since adaptive filtering is only performed in
the log-law region, the damping causes an underprediction
of the velocity field, using a constant driving force for the
turbulent channel flow. This was also shown for constant
filter strengths, see figure 3.

Conclusion
In this paper the lattice Boltzmann method (LBM) was

applied to predict turbulent fluid flows. Different colli-
sion models were investigated and the single relaxation time
scheme was found to be the least dissipative collision model
while allowing grid convergence at increasing resolutions.
Beyond this it was shown, that the classical approximate
deconvolution method (ADM) approach is not suitable for
the simulation of wall-bounded flows. This is because the
filter strength is chosen quite arbitrary as in Ricot et al.
(2009) and Ricot et al. (2002), and the selective viscosity
damping stencils are very dissipative on their own. Thus,
a selective filtering approach was presented based on the
scales resolved. This approach connects mesh resolution
and Reynolds number in terms of a physically motivated
energy drain. Although the method is quite dissipative
for marginally resolved setups (N = 31) at lower Reynolds
numbers (Reτ = 180 and Reτ = 395), it shows promising
results for LES like setups (N = 71). Further work is done
on dynamic forcing, in order to keep the mass flow constant
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and not the absolute volume force. The proposed model is a
consistent turbulence model in the framework of the hydro-
dynamic limit of the filtered Navier-Stokes equations. The
explicit filtering step can be extended for complex geome-
tries since a local temporal average is taken into account for
the scales resolved.
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