
DNS OF A FULLY DEVELOPED TURBULENT POROUS CHANNEL
FLOW BY THE LATTICE BOLTZMANN METHOD

Y.Kuwata, K.Suga
Department of Mechanical Engineering,

Osaka Prefecture University,
1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Japan

kuwata@htlab.me.osakafu-u.ac.jp
suga@me.osakafu-u.ac.jp

ABSTRACT
To understand the turbulent flow physics over perme-

able porous surfaces, a direct numerical simulation (DNS)
of a turbulent channel flow over a porous layer is performed
by the D3Q27 multiple-relaxation time lattice Boltzmann
method. The bulk mean Reynolds number is 3000 and
the presently considered porous layer, whose porosity is
0.71, consists of staggered cube arrays. Using the DNS re-
sults, the phenomenological discussions through the two-
point autocorrelation, one-dimensional energy spectrum
and proper orthogonal decomposition (POD) analyses are
carried out. The reason why the streaky structure over the
porous layer becomes shorter, wider and obscurer than that
near the solid wall are discussed. It is found that the low
wavenumber turbulence is enhanced over the porous layer.
This low wavenumber large-scale motions are considered
to stem from the Kelvin-Helmholtz instability due to the
weakened wall-blocking effect and the strong shear over the
porous layer.

BACKGROUND
Due to its high heat and mass transfer efficiency,

porous structures commonly play important role in indus-
trial fields and thus understanding and modelling the flows
over porous media are industrially crucial issues. To un-
derstand the turbulent flow physics over permeable porous
surfaces, partially direct numerical simulations (DNSs) of
turbulent channel flows over porous layers were performed
by Breugem et al.(2006). Although they solved the turbu-
lent flows directly in the clear channel region, they applied
the volume averaged momentum equation to the porous re-
gions. Since their simulations did not take account of the in-
fluence of not only the porous structure but also the disper-
sion, the predicted turbulence phenomena around and inside
the porous layers might not be exactly correct. Recently,
Chandesris et al. (2013) performed a full DNS study for
a low Prandtl number (Pr=0.1) heat transfer field with the
same flow conditions as those of Breugem et al. (2006). Al-
though they resolved the model porous structure, it was an
unrealistically revitating structure. Since their focus was on
heat transfer, they did not provide further information on the
turbulent flow physics than that by Breugem et al. (2006).
The turbulent porous channel flows were also investigated
experimentally by Suga et al.(2010 and 2011), however, due
to the difficulty of the measurements inside the porous me-

dia, the measurements were limited to the clear channel re-
gions. Accordingly, as far as the authors know, there is no
study on the precise turbulence structure in the interface re-
gion over the porous layer. Therefore in this study, a DNS
study of a turbulent channel flow over a porous layer is per-
formed. To directly treat the porous structure, the D3Q27
multiple relaxation time lattice Boltzmann method of Suga
et al.(2015) is employed.

NUMERICAL SCHEME
The present DNS is performed by the D3Q27 multi-

ple relaxation time lattice Boltzmann method (MRT-LBM)
(Suga et al.,2015) whose time evolution equation is

| f (x+ξ α δ t, t +δ t)⟩− | f (x, t)⟩
= −M−1Ŝ[| m(x, t)⟩− | meq(x, t)⟩] , (1)

where the notations such as|f ⟩ is |f ⟩ = ( f0, f1, · · · , f26)
T

, δ t is the time step andξ α is the discrete velocity. The
transformation matrixM is a 27× 27 matrix which lin-
early transforms the distribution functions to the moments
as|m⟩ = M |f ⟩. The collision matrixŜ is diagonal:

Ŝ≡ diag(0,0,0,0,s4,s5,s5,s7,s7,s7,s10,s10,s10,s13,

s13,s13,s16,s17,s18,s20,s20,s20,s23,s23,s23,s26). (2)

The relaxation parameters presently applied are from Suga
et al.(2015) as

s4 = 1.54, s5 = s7, s10 = 1.5, s13 = 1.83, s16 = 1.4,

s17 = 1.61, s18 = s20 = 1.98, s23 = s26 = 1.74. (3)

The kinematic fluid viscosityν is related to the relaxation
parameters5,

ν = c2
s

(
1
s5

− 1
2

)
δ t, (4)

wherecs/c = 1/
√

3 andc = ∆/δ t where∆ is the lattice
spacing. For the other details, see Suga et al.(2015).

To reduce the computational costs, the multi-block
method proposed by Dupuis et al. (2003) is modified and
employed in this study. To take account of the continuity of
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the mass, momentum and stress tensor at the fine and coarse
block boundaries, the distribution functions of the equilib-
rium f eq and non-equilibriumf neqcomponents are imposed
as

f eq,c = f eq, f , (5)

f neq,c =
s5, f ∆c

s5,c∆ f
f neq, f , (6)

where, super- and sub-scriptsc and f denote the value of
the coarse and fine grids, respectively.

1 FLOW GEOMETRY AND COMPUTA-
TIONAL CONDITIONS
Figure1 illustrates the porous-walled channel geome-

try. The channel bottom wall is made of a porous medium
whilst the solid smooth top wall is considered. The porous
medium presently considered consists of staggered cube
arrays and its porosity isϕ = 0.71 in the homogeneous
region. The permeability is obtained from the computa-
tion asK/h2 = 1.9× 10−4. The computational domain is
2πH(x) × (H + h)(y) × πH(z) whereH is the clear chan-
nel height, the porous layer thickness ish = 0.54H, the
cube size isD = 0.16H and the cube pitchL = 0.24H.
Hence, 5560 cubes are resolved in total. Using the modi-
fied multi-block method, the computational domain is de-
composed to the finer and coarser resolution domains. The
finer mesh domain mainly covers inside and around the
porous layer whilst the coarser mesh domain covers the
clear channel region. The grid node number of the finer
and coarser mesh regions are 1674(x)×210(y)×837(z) and
837(x)× 100(y)× 419(z), respectively. The resolutions of
the finer and coarser domains normalized by the friction ve-
locity at the top solid wallut

τ are∆+
f = 0.8,∆+

c = 1.6, re-
spectively. Hence the cube sizeD is resolved by 22 nodes.
Periodic boundary conditions are applied to the spanwise
direction and a pressure difference is imposed in the stream-
wise direction. For non-slip boundaries, which are applied
to the surfaces of the top wall and the porous elements, the
half-way bounce-back method is used whilst the slip bound-
ary condition is imposed on the very bottom face of the do-
main. The bulk Reynolds number is Reb = UbH/ν = 3000,
the permeability Reynolds number ReK = up

τ
√

K/ν = 7.1,
the friction Reynolds numbers on the solid and porous walls
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Figure 1. Computational geometry of a porous channel
flow.

are Retτ = ut
τ δt/ν = 58 and Repτ = up

τ δp/ν = 242. Here,δt

and δp are the distances from the porous and solid walls
to the location where the Reynolds shear stress becomes
zero:δt = (ut

τ )
2/((ut

τ )
2 +(up

τ )2) andδp = (up
τ )2/((up

τ )2 +
(up

τ )2), respectively. In the following discussions, the value
with the superscripts“ t+”and“ p+”indicate the values
normalized by theut

τ andup
τ .

RESULTS AND DISCUSSIONS
Figures 2 and 3 show the mean velocity and Reynolds

stress profiles which are averaged in thex− z plane. Note
thaty′ indicates the distance from the top solid wall. As in
the previous reports in the literature, Figures 2(a) and 3(a)
show that the mean velocity profile becomes asymmetry due
to the enhanced Reynolds shear stress near the porous layer.
As shown in figure 2(b), the profiles ofU t+ andU p+ near
the solid wall and the porous layer are completely different
and the mean velocity profile near the porous layer is much
smaller than that near the solid wall. Figure 3 indicates that
Reynolds stresses of the spanwise and wall-normal compo-
nents near the porous layer are significantly enhanced whilst
that of the streamwise component is not. Consequently the
anisotropy of the Reynolds stresses near the porous layer
becomes weaker. Inside the porous layer (−0.2 < y/h < 0)
it is confirmed that the streamwise Reynolds stress compo-
nent decays most rapidly and the wall-normal component
becomes the largest component. The normal stresses exist
even inside the porous layer(−0.4 < y/h < 0) where the
Reynolds shear stress vanishes. All the presented statistical
results are consistent with those in the literature. In order to
understand why those statistical results are obtained from

+p
U

+t
U

(a)                                                

 (b)

Figure 2. Mean velocity distributions: (a) normalized pro-
file by the bulk velocity, (b) normalized profiles by the fric-
tion velocities.
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Figure 3. Reynolds stress profiles: (a) normalized profile
by the solid wall friction velocity, (b) normalized near wall
profiles.

the phenomenological viewpoint, the following discussions
focus on the turbulent flow physics by the autocorrelation,
spectrum and POD analyses.

Figure 4 shows iso-surfaces of the second invariant of
the velocity gradient tensor atQt+ = 0.1 which are coloured
based on the local values of the streamwise vorticity of
−1/3 < ωt+

x < 1/3. It clearly indicates the strong vortex
motions near the porous layer. Compared with the struc-
ture near the solid wall, the vortex structure near the porous
layer looks significantly disordered and the vortices pene-
trate into the porous layer reaching to the second cube array

FLOW

Figure 4. Second invariant of the velocity gradient tensor
Q+ = 0.1 coloured by the streamwise vorticity; blue-red
correspond to−1/3 < ω+

x < 1/3

at most. This corresponds to that the wall-normal Reynolds
stress component keeps its strength up toy/h = −0.3 as
seen in figure 3(a).

Figure 5 shows snapshots of the wall-normal vorticity
ωy at differentx− z planes. The vorticity of the solid and
porous walls are normalized by the friction velocity on the
solid wall and the porous layer, respectively. From figure
5(b), although the strong level of the vorticity is observed
near the porous layer atyp+ = 10, the obvious streaks seem
not to be kept. It is clear that the turbulence structure is
totally different from that near the solid top wall where
the elongated streaky structure can be seen in figure 5 (a).
This observation is consistent with the report by Breugem
et al.(2006). At the interface shown in figure 5(c), the vor-
ticity distribution seems to be disrupted into the fine scale
motions by the structural elements. Inside the porous layer
shown in figure 5(d), some large scale intermittent motions
which are considered to be caused by the Kelvin–Helmholtz
(K-H) instability are seen. This implies that the large scale
motions induced by the K-H instability at the interface carry
the fine scale motions into the porous structure. Then, those
fine motions dissipate there whilst the large scale motions
still remain.

(a)

(b)

(c)

(d)

L x

L z

FLOW

Figure 5. Wall-normal vorticity distributions; blue-red
colours correspond to−0.2 < ω+

y < 0.2: (a) near the solid

wall at y
′t+ = 11, (b) near the porous layer atyp+ = 10 ,

(c) at the interface of the porous layer, (d) inside the porous
layer atyp+ = −24.
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Figure 6. Low-pass filtered wall-normal vorticity distri-
butions atyp+,y′t+ ≃ 10; blue-red colours correspond to
−0.2 < ω+

y < 0.2: (a) near the solid wall, (b) near the
porous layer.

In order to investigate the characteristic large scale vor-
tex structures over the porous layer in detail, Figure 6 shows
the snapshots of the low-pass filtered wall-normal vorticity.
The vorticity is calculated by the low-pass filtered veloc-
ity fields where only the low wavenumber fluctuation ve-
locity components of the span and streamwise directions
(κx,κz < 4/Lx) are considered. Although the elongated
streaky structure near the porous layer is hardly seen in
figure 5, it is observed in the filtered wall-normal vortic-
ity field. The streaky structure shown in figure 6 (b) seems
to be wider in the spanwise and shorter in the streamwise
directions compared with that near the solid wall of figure 6
(a).

To examine the scale of the vortex structure near the
porous layer, figures 7 and 8 show the streamwise and
spanwise autocorrelations atyp+,y′t+ ≃ 10. From figure
7, the streamwise autocorrelationsRuu,Rvv and Rww near
the porous wall converge to zero faster than those near the
solid wall. From the autocorrelation, the integral scale in
the streamwise direction is computed as:

L+
uiu j

=
∫ ∞

0
Ruiu j (x

+)dx+. (7)

The integral scale of the streamwise velocity near the solid
wall Lt+

uu and porous layerLp+
uu areLt+

uu = 181,Lp+
uu = 87,

respectively and theLp+
uu is found to be about a half of the

Lt+
uu. The autocorrelationsRvv andRww near the porous layer

have the local minimum whilst such tendency can not be
seen near the solid wall. This implies that there exists the
perturbation in the streamwise direction induced by the K-
H instability and it is considered that this perturbation dis-
rupts the elongated streaky structures near the porous layer.
As seen in figure 8, the decay rates of the spanwise au-
tocorrelationsRuu,Rvv and Rww near the porous layer are
smaller than those near the solid wall. Since the distance
from the origin to the location of the local minimum of
the autocorrelationRuu corresponds to a half of the streak
pitch, the streak pitch near the porous layer is approximately
Lp+

st ≃ 200, which is approximately twice wider than that

near the solid wallLt+
st ≃ 100. Although the autocorrela-

tions Ruu and Rvv near porous and solid walls have local
minimum, the local minimum value near the solid wall is
smaller than that near the porous layer. This implies that the
streaky structure near the porous layer is more obscure than
that near the solid wall. Above results mean that the streaky
structure near the porous layer is approximately twice as
wide as but half as long as that near the solid wall due to
the large scale perturbation induced by the K-H instabil-
ity. Hence the streaks become unclear compared with those
near the solid wall, which corresponds to the observation in
figures 5 and 6.

Figure 9 shows the one-dimensional energy spectra at
yp+,y′t+ ≃ 10. The energy density of the high wavenum-
bers are several orders lower than the energy density of the
low wavenumber and the energy pile-up can not be seen in
high wavenumber region. The streamwise and spanwise en-
ergy spectra of the wall-normal and spanwise components
E+

vv andE+
ww are enhanced especially in the low wave num-

ber region (κ+
x ,κ+

z < 0.1). In particular, the spanwise en-

porous 

porous 

porous 

solid

solid

solid

(a)

(b)

(c)

Figure 7. Streamwise autocorrelation profiles at
yp+,y′t+ ≃ 10 : (a) Ruu along the streamwise direction,
(b) Rvv along the streamwise direction, (c)Rww along the
streamwise direction.
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ergy spectrum of the wall-normal componentE+
vv near the

solid wall is damped due to the wall-blocking effect whilst
that near the porous layer becomes significant and its level is
approximately ten times larger than that near the solid wall.
This means that the active injection and suction motions ap-
pears even near the porous layer. However the energy spec-
tra of the wall-normal and spanwise components are en-
hanced, as shown in figure 9 (b) the spanwise energy spec-
trum ofE+

uu near the porous layer becomes larger in the low
wavenumber region and smaller in the high wavenumber re-
gion. Therefore the energy spectra in the high wavenumber
region become more isotropic than those near the solid wall.
It is thus confirmed that although the elongated longitudinal
structure near the porous wall is disrupted, the streamwise
energy spectraE+

vv andE+
ww of the low wavenumber region

don’t decay and the levels of the energy densities become
larger than those near the solid wall.

In order to investigate the effect of the pressure fluc-
tuation, figure 10 shows the pressure fluctuation. The pres-

porous 

porous 

porous 

solid

solid

solid

(a)

(b)

(c)

Figure 8. Spanwise autocorrelation profiles atyp+,y′t+ ≃
10 : (a)Ruu along the streamwise direction, (b)Rvv along
the streamwise direction, (c)Rww along the streamwise di-
rection.

sure fluctuation becomes significant near the interface of the
porous layer. Although the pressure fluctuation rapidly de-
cays inside the porous layer, it doesn’t disappear even deep
inside the porous layer and its level is roughly as the same
as that near the solid wall. It is found that the effect of the
pressure fluctuation exists even inside the porous layer.

For extracting the large scale pressure fluctuation in-
duced by the K-H instability, the snapshot POD is applied
to the pressure field. Figure 11 shows the POD modes of
the pressure filed. It should be noted that the POD modes1
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Figure 9. One-dimensional energy spectrum distributions
at yp+,y′t+ ≃ 10 : (a) streamwise energy spectra, (b) span-
wise energy spectra.
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and 2, modes3 and 4, modes5 and 6 are the pair POD modes
and each pair mode becomes the counterpart of each other.
From figure 11, all POD modes shows the roll-cell structure
stretched to the spanwise direction whose cores are regu-
larly aliened over the porous layer. As the POD mode in-
creases, the number of the roll-cell increases and the roll-
cell structures prevail over the whole regions especially in
the low-order modes. This large scale roll-cell structure is
considered to come from the K-H instability and it is found
that the effect of the K-H instability prevail not only in the
clear channel region but also deep inside the porous layer.

CONCLUSION
A direct numerical simulation (DNS) study of a turbu-

lent channel flow over a porous layer is performed by the
D3Q27 multiple-relaxation time lattice Boltzmann method.
The bulk Reynolds number is set to 3000 and the porous
layer whose porosity is 0.71 consists of the staggered
cube arrays. From the two-point autocorrelation, one-
dimensional energy spectrum and proper orthogonal de-
composition (POD) analyses, it is found that the streaky
structure over the porous layer is disrupted by the large scale
motion induced by the K-H instability. Autocorrelations re-
veal that the streak length becomes half and its width be-
comes twice of that near the solid wall. The large scale
fluctuated motion is also detected by the one-dimensional

porous

(a)                                                        

(b)

Figure 10. Pressure fluctuation profiles : (a) normalized
profile by the solid wall friction velocity, (b) normalized
profile by the friction velocity on each side.

spectrum analysis and the roll-cell structures in the pressure
field by the K–H instability are revealed by the POD anal-
ysis. The Reynolds stress of the wall-normal component
is significantly enhanced over the porous layer and it be-
comes the largest component inside the porous layer. This
is because the perturbations by the K–H instability carry the
turbulence vertically into the porous layer.
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Figure 11. Snapshot POD modes of the pressure field.
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