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ABSTRACT
We describe a fast direct numerical simulation (DNS)

method that promises to directly characterize the hydraulic
resistance of any given rough surface, from the hydrauli-
cally smooth to the fully rough regime. The method cir-
cumvents the unfavorable computational cost associated
with simulating high-Reynolds-number flows by employing
minimal-span channels (Jiménez & Moin, 1991). Proof-
of-concept simulations, employing the parametric-forcing
roughness model (Busse & Sandham, 2012), demonstrate
that flows simulated in minimal-span channels are suffi-
cient for capturing the downward velocity shift predicted by
flows in full-span channels. Owing to the minimal cost, we
are able to conduct parametric DNSs with increasing rough-
ness Reynolds numbers while maintaining a fixed rough-
ness height that is 40 times smaller than the half-channel
height. When coupled to an unstructured-grid code, the
present method promises a practical, fast and accurate tool
for characterizing hydraulic resistance directly from pro-
filometry data of rough surfaces.

INTRODUCTION
Scientists have, for years, been cataloging the relation-

ship between surface roughness and hydraulic resistance,
the former pertaining to geometry while the latter to fluid
dynamics (see reviews by Jiménez, 2004; Flack & Schultz,
2010). The cataloging never ends because each rough sur-
face is unique. In order to make predictions in full-scale
conditions, it is necessary to establish the equivalent sand-
grain roughness ks of a given surface, which relates the
drag increment of a given surface to an equivalent surface
composed of uniform sand grains. Once ks has been de-
termined, it is possible to predict the drag penalty at ap-
plication Reynolds numbers using either the Moody chart
(Moody, 1944) for pipe and channel flows, or develop-
ments of this for boundary layers (Prandtl & Schlichting,
1955; Granville, 1958). Generally speaking, the approach
to date has been to first identify a particular rough surface
of scientific or engineering interest, and then to character-
ize its hydraulic resistance through well-controlled labo-
ratory experiments that simulate various flow conditions.
By exposing the rough surface to an increasing range of
flow speeds, until such point beyond which the resistance
coefficient C f becomes constant, referred to as the ‘fully
rough’ asymptote, it is possible to ascertain ks. A conve-
nient dimensionless group here is the equivalent roughness

Reynolds number ks ≡ ksUτ/ν , where the friction veloc-
ity, Uτ ≡

√
τ0/ρ ≡ U∞

√
C f /2; τ0 is the wall drag force

per plan area; ρ is the density; and U∞ is the freestream or
bulk velocity; and ν is the kinematic viscosity. For accurate
predictions, it is not sufficient to merely establish ks, rather
the increment of C f caused by surface roughness must be
mapped with respect to k+s at all conditions from the dy-
namically smooth up to the fully rough regimes, which gen-
erally covers the approximate range 5 . k+s . 100. Over
the last century or so, this painstaking and time-consuming
procedure has been repeated for many surfaces of interest
and in this way, a database of roughness is amassed in the
published literature over time.

One problem here is that there is no widely applica-
ble function that relates ks, a dynamic parameter, to readily
observable or measurable geometric properties of the sur-
face, such as the root-mean-square roughness height krms
or average roughness height ka. Certain classes of sur-
faces, say sand-grain roughness, may exhibit an approxi-
mate proportionality between ks and some physical surface
length scale, but as a general rule this proportionality will
not hold across different surface topologies. There are nu-
merous attempts in the literature to formulate more com-
plicated functions, often involving some measure of mean
surface height such as krms or ka and other properties re-
lating to the shape or arrangement of roughness elements
such as skewness, effective slope, solidity and so on (see
review by Flack & Schultz, 2010). Though many of these
parametrizations have some success in describing the par-
ticular class of surfaces for which they were formulated
(e.g. painted or sanded surfaces), none are widely applica-
ble across the almost limitless range of surface topologies
that are encountered in engineering and meteorological ap-
plications.

The present method to directly evaluate ks represents
a paradigm shift away from such parametrizations that are
based on a handful of geometrical factors. Recognizing
that all roughness geometries are unique, and that a one-
size-fits-all formulaic solution is proving elusive, we have
sought an approach to minimize the expense involved in ex-
perimentally determining ks. The approach relies on the di-
rect computation of hydraulic resistance by direct numerical
simulation (DNS), which we presently show can be made
substantially cheaper and faster than previously thought.
We circumvent the otherwise-prohibitive cost of straightfor-
ward DNS by employing minimal-span channels (Jiménez
& Moin, 1991), the rationale of which is discussed in the
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following.

Normally, a straightforward and direct computation of
roughness drag using DNS employing full-span channels
is extremely expensive as it entails simultaneously captur-
ing both the bulk flow, which scales with the half-channel
height, h, and the near-wall flow around the roughness
elements, which scales with the characteristic roughness
height, k. Given a rough surface of fixed blockage ra-
tio ks/h . 1/40 (Jiménez, 2004), a complete characteri-
zation of hydraulic resistance requires parametric simula-
tions that sweep through the roughness Reynolds numbers,
k+s ≡ kUτ/ν ≈ 5 to 100, corresponding to the hydraulically
smooth and the fully rough regimes, respectively. For the
blockage ratio, h/ks = 40, this means performing paramet-
ric simulations at the friction Reynolds numbers, Reτ ≡
hUτ/ν = k+s (h/ks) ≈ 200 to 4000, which are currently un-
feasible for routine engineering computations. Recall that
the cost of DNS, counting the number of spatial and tem-
poral degrees of freedom, scales unfavorably as Re3

τ (Pope,
2000, § 9.1.2). For grids conforming to the surface of the
roughness elements, this cost is further exacerbated by the
need for increased mesh density, and reduced time steps.

However, the extreme cost associated with conven-
tional DNS employing full-span channels seems unneces-
sary. The quantity of interest from an engineering point of
view is the retardation in the mean flow over roughness rel-
ative to the smooth-wall flow. This relative flow retarda-
tion or downward velocity shift, ∆U , occurs mostly in the
vicinity of the roughness layer, but holds constant above
a few roughness heights, well into the log layer (if it ex-
ists) and the wake region, cf. Townsend’s outer-layer sim-
ilarity hypothesis (Townsend, 1976). This suggests that a
simulation of only the near-wall region and its interaction
with the roughness geometry is required in order to extract
∆U+ ≡ ∆U/Uτ , which is known as the (Hama) roughness
function. This distillation of the problem is consistent with
the observation that ∆U+ does not depend on the bulk flow
but only on k+ and other details of the roughness geometry.

A framework for simulating only the near-wall dynam-
ics is the minimal channel as first described by Jiménez
& Moin (1991) and is currently receiving renewed atten-
tion in various contexts of understanding wall-bounded tur-
bulence (Flores & Jiménez, 2010; Hwang, 2013; Lozano-
Durán & Jiménez, 2014). Presently, we exploit this frame-
work for measuring ∆U+ by fully resolving the near-wall
Navier–Stokes dynamics and its interaction with the (mod-
eled) roughness geometry. The prohibitive cost of con-
ventional DNS is alleviated by use of these minimal-span
channels, which are designed to preclude the bulk flow that
scales with h. Without the bulk flow, the cost of DNS with
roughness now only scales as k+3

s , which is quite feasible
for the engineering task at k+s ≈ 5 to 100. In general, the
computational cost is (h/ks)

3 times less than that of a con-
ventional DNS in a full-span channel.

In the remainder, we show results from simulations
using the parametric-forcing roughness model of Busse &
Sandham (2012) that demonstrate the veracity of the present
method.

SIMULATIONS
We solve the following Navier–Stokes equations of

motion between two no-slip, impermeable walls at z = 0

and 2h:

∂ui

∂ t
+

∂u jui

∂x j
=− 1

ρ
∂ p
∂xi

+ν
∂ 2ui

∂x2
j
+ f (t)δi1

−αiF(x3,k)u1|u1|, (1)

∂u j

∂x j
= 0, (2)

where ui is the velocity; t is time; x j is the spatial coordi-
nate; ρ is the density; p is the pressure; f (t) is the spatially
uniform, time-varying, pressure gradient that drives the flow
at constant mass flux; and the last term on the right-hand
side of (1) represents the body force due to roughness. Here
(x1,x2,x3) or (x,y,z) are taken as the (streamwise, span-
wise, wall-normal) coordinates. The effect of any rough-
ness geometry, which includes both pressure and viscous
drag, can always be formally written as a forcing term on
the right-hand side of the Navier–Stokes equation but, for
the present purposes, the form adopted here is meant to rep-
resent a generic roughness in the spirit of the parametric-
forcing model of Busse & Sandham (2012). The roughness
forcing is active only in the streamwise direction and op-
poses the flow, αi = αδi1, and F(x3,k) is the shape func-
tion that depends on the characteristic roughness height k,
chosen here to be the step function

F(x3,k) =

{
1 x3 < k or 2h− x3 < k,
0 otherwise.

(3)

In general, the shape function depends on the geometry
of the roughness being modeled. For example, MacDon-
ald et al. (2014) show that an exponential shape function
closely models a three-dimensional single-mode sinusoidal
roughness. The roughness factor, α , is thought to scale
with the roughness density, that is, the frontal area per unit
volume (Nikora et al., 2007; Busse & Sandham, 2012),
measured in inverse-length (area per unit volume) units.
Presently, α = 1/(40k) and k = h/40 for all the simulations.
This simple roughness model has the advantage of appear-
ing completely homogeneous to the flow over it. This ide-
alized roughness, which retains only information about the
roughness height k, will be used to show that k imposes
further restrictions on the minimal span of the computa-
tional domain. Periodic boundary conditions are imposed
in the streamwise and spanwise directions with respective
domain sizes, Lx and Ly. The parameters for the 20 separate
simulation cases for this study are documented in table 1.
The streamwise and spanwise grids are uniform, the wall-
normal grid is stretched with the cosine mapping and the
chosen resolutions are comparable to other DNSs (Moser
et al., 1999; Bernardini et al., 2014). The streamwise do-
main sizes are large enough to accommodate the near-wall
streaks, which are 1000 wall units long.

RESULTS

Mean velocity profiles at fixed friction
Reynolds number

The mean velocity profiles, plotted in inner wall units,
U+ ≡ U/Uτ and z+ ≡ zUτ/ν , from all the simulations are
shown in figure 1. We first focus on figure 1(c), which
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Table 1. Simulation cases listed with nominal Reτ . Each of these 10 cases is run using smooth and rough walls, that is, a
total of 20 separate simulations. In the smooth cases, α = 0, while in the rough cases α = 1/(40k) and h/k = 40. ∆zc is the
wall-normal resolution at the channel centre, where it is coarsest.

Reτ L+
x L+

y Nx Ny Nz ∆x+ ∆y+ ∆z+c

Minimal 180 3707 116 384 24 192 9.7 4.8 2.9

Minimal 395 3707 116 384 24 192 9.7 4.8 6.5

Full 590 3707 1854 384 384 256 9.7 4.8 7.2

Minimal 590 3707 116 384 24 256 9.7 4.8 7.2

Full 950 5969 2985 640 640 384 9.3 4.7 7.8

Minimal 950 3581 112 384 24 384 9.3 4.7 7.8

Minimal 2000 3707 116 384 24 768 9.7 4.8 8.2

Minimal 2000 3707 232 384 48 768 9.7 4.8 8.2

Minimal 2000 3707 463 384 96 768 9.7 4.8 8.2

Minimal 4000 3707 463 384 96 1024 9.7 4.8 12.3

shows four mean velocity profiles, all at Reτ ≈ 590, the two
in gray from minimal-span channels with L+

y ≈ 116 and the
two in black from full-span channels with Ly/h ≈ 3π . The
two solid lines, one full-span and one minimal-span, cor-
respond to the smooth-wall channels and the two dashed
lines, one full-span and one minimal-span, correspond to
the (modeled) rough-wall channels. Other parameters, in-
cluding the grid resolutions and streamwise domain lengths,
are held fixed. It is evident that the full-span and minimal-
span simulations agree in the near-wall region, z+ . 46.
This has been previously shown for the smooth-wall case
by Flores & Jiménez (2010); Hwang (2013). With the top
of the roughness-forcing region located by the dashed ver-
tical line at k+ = Reτ/(h/k)≈ 590/40 ≈ 15, it can be seen
that the full- and minimal-span profiles also agree for the
rough-wall case in the vicinity of the roughness, suggest-
ing that the minimal flow accurately captures the essential
physics of the near-wall roughness-affected region. Con-
sistent with Flores & Jiménez (2010); Hwang (2013), the
minimal-channel profiles exhibit an exaggerated wake. Fur-
ther, the minimal-channel profiles diverge from the full-
channel profiles at precisely the same location, z+c ≈ 46,
regardless of whether the wall is rough or smooth. The
agreement in the profiles below zc suggest that the min-
imal flow in this region is unconstrained by the minimal
span, behaving as if it were in a full-span channel. Above
zc, the minimal flow is constrained and, in the absence of
eddies up to size z that typically characterize this location
in full-span channels, the mixing of momentum is signifi-
cantly reduced, leading to a profile with a much sharper in-
crease in mean velocity compared to the usual log behavior
in full-span channels. Interestingly the profiles in the re-
gion above zc are both constrained in exactly the same way.
This is further supported by plotting the downward veloc-
ity shifts relative to the smooth-wall case, U+

s −U+
r , shown

in the inset of figure 1(c). Above the roughness-forcing re-
gion, z+ & k+ ≈ 15, the shift is parallel and impervious to
the minimal-span constraint, suggesting a kind of general-
ized outer-layer similarity in the sense of Townsend (1976).

Typically, for profiles at unmatched Reτ , the Hama rough-
ness function ∆U+ is obtained by the shift in the log re-
gion where it is well defined. However, this is unnecessary
in the present simulations at matched Reτ since the shift
U+

s −U+
r is constant everywhere above the roughness and

is therefore well defined, so that we can unambiguously set
∆U+ = (U+

s −U+
r )|z>k. The behavior of U+

s −U+
r , where

it increases in where z< k and remains constant where z> k,
is consistent with the expectation that it is the dynamics of
the near-wall roughness-affected flow alone that sets ∆U+.
And further, the result that U+

s −U+
r is virtually identical

in full- and minimal-span simulations supports the idea that
the minimal flow faithfully captures the relevant flow dy-
namics that sets ∆U+. This demonstrates the efficacy of the
present method.

Effect of span
Many of the aforementioned behaviors in figure 1(c)

at Reτ ≈ 590, k+ ≈ 15 extend to other Reynolds num-
bers, e.g. Reτ ≈ 950, k+ ≈ 24 (figure 1d). In particular,
the roughness-affected region is faithfully predicted by the
minimal-span simulations, and ∆U+ can be unambiguously
determined by evaluating U+

s −U+
r wherever z > k for both

full- and minimal-span simulations. The minimal- and full-
span profiles still diverge at z+c ≈ 46 for Reτ ≈ 950, as with
Reτ ≈ 590 (compare figures 1c, d), because the minimal
span is held fixed at L+

y ≈ 116, consistent with previous
studies (Flores & Jiménez, 2010; Hwang, 2013) that show
zc ∝ Ly ≈ 0.3–0.4Ly. With Ly held fixed, and with increas-
ing Reτ , there would be a point where k > zc. This suggests
a criterion in order for the minimal-channel method to work
as intended, namely, that k needs to be smaller than zc. This
criterion makes physical sense. When the roughness is no
longer immersed in the natural unconfined flow below zc, it
follows that ∆U+ can no longer be accurate because ∆U+

is a measure of the interaction between the roughness and
the natural unconfined flow. The simulations at Reτ ≈ 2000,
4000, respectively in figures 1(e, f ), with various Ly, quan-
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Figure 1. Mean velocity profiles of simulated turbulent channel flow at (a) Reτ ≈ 180, (b) Reτ ≈ 395, (c) Reτ ≈ 590, (d)
Reτ ≈ 950, (e) Reτ ≈ 2000 and (f ) Reτ ≈ 4000 through smooth-wall (solid) and h/k = 40 rough-wall (dashed), minimal-span
(gray) and full-span (black) channels. The vertical dashed line marks the top of the roughness-forcing region, z < k. The inset
shows that the velocity shift, U+

s −U+
r , stays the same for both minimal- and full-span channels above the roughness-forcing

region. The smooth-wall full-channel Reτ ≈ 180, 395 profiles in (a, b) are from Moser et al. (1999); the smooth-wall full-
channel Reτ ≈ 2000 profile in (e) is from Hoyas & Jiménez (2006) and the smooth-wall full-channel Reτ ≈ 4000 profile in (f )
is from Bernardini et al. (2014).

tify this criterion. As L+
y increases with values 116, 232

and 463, the location where the minimal- and full-span sim-
ulations diverge, z+c , increases with values 46, 93, 185,
that is, zc ≈ 0.4Ly. It is reassuring that the minimal-span
smooth-wall profiles capture more and more of the full-
channel profiles of Hoyas & Jiménez (2006) and Bernar-
dini et al. (2014) as Ly increases (solid lines in figures 1e,
f ). For Reτ ≈ 2000 (figure 1e), the thinnest minimal-span is
L+

y ≈ 116, corresponding to z+c ≈ 0.4(116) ≈ 46, which is
only slightly below the top of the roughness-forcing region
at k+ ≈ 50. The criterion, k < zc ≈ 0.4Ly, is only slightly
violated, leading to undetectable discrepancies in U+

s −U+
r ,

as shown in the inset. However, for Reτ ≈ 4000 (figure 1f ),
the top of the roughness forcing region k+ ≈ 100 is unequiv-
ocally larger than z+c ≈ 46 of the thinnest minimal chan-

nel, and clear discrepancies result in U+
s −U+

r , as shown in
the inset. Once the spans are widened to L+

y ≈ 232, 463,
such that z+c ≈ 93, 185 & k+ ≈ 100, the criterion k < zc is
more or less satisfied, and U+

s −U+
r collapses, yielding a

well-defined ∆U+. Although the criterion, k < zc, is devel-
oped here with the present modeled homogeneous rough-
ness, where k measures the distance between the top of
the roughness-forcing region and the hydraulic origin, we
expect that, in practice, a conservative criterion would be
kt < zc, where kt is the maximum peak-to-valley roughness
height.
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Figure 2. (a) Characterization of hydraulic roughness using the Hama roughness function, ∆U+, for turbulent flow through
rough channels with fixed h/k = 40. Increasing values of k+ are obtained by increasing Reτ = h+. The equivalent sand-grain
roughness is ks = 1.6k. The data from the uniform sand grain experiment of Nikuradse is extracted from Jiménez (2004). (b)
Hama roughness function against modeled drag fraction. (c) Skin-friction coefficient, C f ≡ 2U2

τ /U2
b , versus bulk Reynolds

number, Reb ≡ 2Ubh/ν , showing that C f for the rough cases approach a constant for large Reb, as expected in the fully rough
regime. The simple fit for the resistance law is taken from Dean (1978).

Hama roughness function and skin-friction
coefficient

A sweep in roughness Reynolds numbers, from k+ ≈ 5
to 100, corresponding to Reτ ≈ 180 to 4000 (table 1) is
needed in order to fully characterize the roughness tran-
sition, from the hydraulically smooth to the fully rough
regime. The Hama roughness function, ∆U+, for such a
sweep is shown in figure 2(a). Only ∆U+ from simulations
satisfying k < zc are shown. Here, even the Reτ ≈ 4000
case is feasible owing to the significant saving in computa-
tional cost associated with the minimal-channel technique.
As a comparison, the smooth-wall full-channel profile in
figure 1(f ) requires a simulation with 8192× 4096× 1024
grid points (Bernardini et al., 2014) while the minimal-
channel case at the same Reτ with Ly ≈ 463 only requires
384× 96× 1024 grid points, amounting to a factor of 910
saving in number of grid points. The horizontal axis is
ks = 1.6k, where the constant 1.6 relates this particular
(modeled) roughness height k with parameter α = 1/(40k)
to its dynamic behavior measured against the equivalent
sand-grain roughness ks. The constant 1.6 can be deter-
mined owing to the availability of data in the fully rough
regime that can be matched to the fully rough asymptote of
uniform sand grains, log(k+s )/κ +A− 8.5, where κ ≈ 0.4,
the von Kármán constant and A ≈ 5.2, the smooth-wall log-
law intercept. It is interesting to note that the top-hat version
of the parametric-forcing model (Busse & Sandham, 2012)
that is employed in the present study closely models the
uniform-sand-grain roughness behavior in the transitionally

rough regime, 4 . ks . 70. It is often thought that the pres-
sure drag of the roughness elements dominates the viscous
drag in the fully rough regime, k+s & 70–100. This idea is
quantified using the present roughness model. Figure 2(b)
shows the modeled drag fraction Fmod./(Fmod.+Fvisc.) ver-
sus ∆U+, where Fmod. ≡

∫ k
0 L−1

y
∫ Ly

0 L−1
x

∫ Lx
0 αu1|u1|dxdydz

and Fvisc. ≡ νdU/dz|z=0. The model Fmod. can be inter-
preted as a pressure drag because it scales as the square of
velocity. As expected, the drag partition undergoes a tran-
sition from a viscous-drag-dominated regime to a modeled-
drag-dominated regime as ∆U+ increases. However, even
at ∆U+ ≈ 9 corresponding to k+s ≈ 160, we observe that
Fmod./(Fmod.+Fvisc.) ≈ 0.72, indicating that a residual in-
fluence from viscous drag remains. However, figure 2(c)
shows that the skin-friction coefficient, C f , appears to al-
ready reach a constant value, independent of Reb, a stan-
dard method used to show that a flow is in the fully rough
regime. The bulk velocity, Ub, for a full-span rough chan-
nel flow is used in C f and Reb; Ub is readily estimated from
Ur, f ull =Us, f ull − (Us,min −Ur,min), where all profiles are at
matched Reτ , which are available in this case.

CONCLUSIONS
We have presented a novel, fast and direct method for

characterizing the hydraulic resistance of any given surface
roughness. The way in which a particular roughness tran-
sitions from the hydraulically smooth to the fully rough
regime is, to the first approximation, described by how the
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roughness geometry interacts with the near-wall flow. The
method presented herein shows that this interaction, so far
as the mean drag is concerned, is captured in the absence of
the bulk flow using the idea of minimal-span channels.

The dynamic drag characterization of a rough surface
is encapsulated in the ∆U+, which we show can be accu-
rately determined using minimal-span channels. The fact
that ∆U+ is plotted against k+ (or k+s ) in the literature and
not against Reτ = h+ acknowledges that ∆U+, to a large
extent, depends only on the roughness-affected near-wall
flow. The minimal-span channel is a method for simulating
this near-wall flow of thickness O(k) without resolving the
outer scale h ≫ k, thereby breaking the curse of the (outer)
Reynolds number. The savings in computational cost for
the present method are possible because capturing only the
near-wall flow requires far less grid points than capturing
the full flow. The present method can be used to obtain the
drag characteristics of many surfaces very quickly.

We propose that all the following criteria must be si-
multaneously satisfied when choosing the minimal span, Ly:

(i) Ly > 100ν/Uτ , the minimal span must be wide enough
to accommodate the near-wall streaks;

(ii) Ly > k/0.4, the minimal span must be wide enough to
immerse the roughness in unconfined wall turbulence;
and

(iii) Ly > λy, the minimal span must be wide enough to cap-
ture the widest features of the roughness, λy.

Criterion (i) is fairly well established (e.g. Jiménez & Moin,
1991; Hwang, 2013), necessary to capture the interaction,
and perhaps the destruction (Jiménez, 2004), of the near-
wall streaks by the roughness elements as k+ increases. Cri-
terion (ii) is rigorously demonstrated in the present study,
and stems from the distance-from-the-wall (z) scaling in the
log region where eddies have spans or sizes, here set by the
domain span Ly, that scale with z. Although not explored
in this study, criterion (iii) is presumably necessary if ∆U+

is to capture the whole effect, from the widest scales, λy, to
the thinnest scales, of the roughness geometry.

In many ways, the present idea is not new. Large-
eddy simulation (LES) directly simulates or resolves the
large-scale flow that are deemed to be dependent on large-
scale geometry while modeling the small-scale flow that are
deemed to be universal. Here, in the case of the minimal-
channel method, the idea of LES is used in reverse, and can
be interpreted as small-eddy simulation (SES), a term first
coined, and used in the same context, by Jiménez (2003).
The minimal-channel method directly simulates or resolves
the small-scale flow that are deemed to be dependent on the
small-scale roughness geometry while modeling the large-
scale flow that are deemed to be universal. In LES, the small
scales are understood through the phenomenological theory
of Kolmogorov, while in SES (minimal-channel method),
the large scales are understood through the phenomenolog-
ical theory of Townsend. In other words, we are directly
simulating the non-universal parts of wall roughness while
leaving the universal parts to be described by Townsend’s
outer-layer similarity hypothesis.

In Chung et al. (2015), the efficacy of the present
method is rigorously demonstrated by comparison with
DNS of explicitly gridded roughness simulated using a
finite-volume code.
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