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ABSTRACT
The paper is an experimental and analytical investi-

gation of the analogy between the variance of the passive
scalar field, θ 2 and the dynamical field, in particular the
total kinetic energy q2 (the sum of variances of the three
velocity components). The analogy between the transport
equation of θ 2 and q2 is most likely to be valid under the
constraint of statistical homogeneity (negligible effect of
pressure) and for a Schmidt (or Prandlt) number equal to
1 (molecular or viscous diffusion predominates in the same
range of scales).

Experimental data were inferred from simultaneous
hot- and cold-wire measurements in a slightly heated ax-
isymmetric shear layer, for which similar initial and bound-
ary conditions were imposed for both θ and q (i.e., the mean
temperature and velocity gradient are both present).

We show clear experimental evidence that:
i) at large scales, for which the production is dominant (ei-
ther shear or mean temperature gradient), the analogy be-
tween the kinetic energy and the temperature variance is
satisfactory.
ii) the smallest scales, especially for locations where the
magnitude of the mean temperature and velocity gradient
decreases, become shear-independent, and the analogy is
not tenable.

We provide an analytical explanation for this be-
haviour, based on a simple model which is reasonably well-
validated against experimental data. It is shown that:
i) local isotropy is not necessary for the similarity θ − q to
be valid;
ii) the main factor which allows the similarity to hold is
the production term in the one-point kinetic energy budget
equation. When only production is present, a simple closure
of this term based on a Prandtl-type model leads to simple,
analytical solutions and the similarity can be explained.
iii) when other effects (e.g., decay) are present, departures
from similarity can occur.

CONTEXT
It has been widely postulated that the passive scalar

field θ should reveal some degree of analogy with the dy-
namical field since θ is simply convected by the velocity
vector u⃗. Fulachier & Dumas (1976) were first to eluci-

date such an analogy in the slightly heated boundary layer.
More precisely, they identified that the analogy has the best
prospect of being satisfied when the temperature field is
compared to the total kinetic energy q2 (the sum of fluctu-
ations of the three velocity components). This analogy was
further validated from experiments in several laboratory and
natural shear flows (Fulachier & Antonia (1984)).

The analytical justification for this relies on the anal-
ogy that exists in the transport equations of θ and q. As
mentioned by Fulachier & Antonia (1984) and Antonia
et al. (1997), the analogy in the transport equation of θ 2

and q2 is however only valid under the constraint of statis-
tical homogeneity (negligible effect of pressure) and for a
Schmidt (or Prandlt) number equal to 1 (molecular or vis-
cous diffusion predominates in the same range of scales).

Arguably, the best candidate for experimentally ob-
serving the analogy between θ and q is grid turbulence in
which the scalar (temperature) is injected through the use of
a heated mandoline. However, Danaila & Antonia (2009)
and Danaila et al. (2012) demonstrated that in grid turbu-
lence, scalar and dynamical fields do not behave similarly
even though their transport equations are analogous (see
also Chassaing et al. (2002)).

Hence, the key ingredient which results in an analogy
between scalar and velocity fluctuations is apparently as-
sociated with the inhomogeneity or forcing at large scales,
and specifically the mean shear which is present in most of
the experiments of Fulachier & Antonia (1984) but not in
grid turbulence or more generally shearless turbulence as
encountered on the axis of wakes and jets. This statement is
rather speculative and the conditions under which the anal-
ogy is satisfied, e.g. the specific role played by the mean
shear, are worth investigating.

This is the main objective of this paper which exploits
experimental data inferred from simultaneous hot- and cold-
wire measurements in a slightly heated axisymmetric shear
layer. The mixing layer appears to be well suited for high-
lighting the influence of the mean shear on the degree of
analogy between statistics of θ and q since (i) it is a shear-
driven turbulent flow with (ii) similar initial and boundary
conditions for both θ and q, i.e. the mean temperature and
velocity gradient are both present and are of same sign. (iii)
The mean shear is inversely proportional to the streamwise
distance. The analogy between scalar and velocity fluctu-
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ations can therefore be tested as a function of the varying
mean shear magnitude.

EXPERIMENTAL RESULTS
Experimental set-up and measurements.
Experiments were performed in a mixing layer associ-

ated with a slightly heated round jet, Thiesset et al. (2014).
The jet nozzle has a diameter of D = 55mm, and the jet
exit velocity U0 was set to 12.3m.s−1. The corresponding
Reynolds number ReD = U0D/ν is 46,700 (ν is the kine-
matic viscosity). The temperature excess θ0 ≈ 15oC on the
jet centerline. The ratio Gr/Re2

D (Gr is the Grashof num-
ber) was about 3.5 × 10−3 indicating that temperature can
be considered as a passive scalar. Simultaneous velocity and
temperature measurements were performed at six different
downstream distances from the jet nozzle 1.5 ≤ x/D ≤ 4
and for several transverse positions across the shear layer.
The longitudinal u and transverse v velocity components
in the x and y direction respectively were measured using
a X-wire probe, consisting a two Wollaston (Pt-10%Rh)
wires of diameter 2.5µm and typical length of 0.5mm. Ve-
locities u and v were measured together with the tempera-
ture θ for which a Wollaston (Pt) wire of nominal diame-
ter dw = 0.6µm, was used. A square-wave injection tech-
nique was adopted for the determination of the frequency
response of the cold wire.

Experimental assessment of the analogy in a slightly
heated mixing layer.

The analogy between θ 2 and q2 is assessed both in
spectral and physical spaces. We first define the normalised
spectra as Eββ = Fββ /β 2. Fββ is the power spectral den-
sity of β ≡ u,v,θ and the overbar denotes averaging. The
spectral energy distribution of the total kinetic energy is
Fqq = Fuu +Fvv +Fww. For structure functions, the normal-

isation reads Dββ = [β (x+ r)−β (x)]2/β 2, where r is the
spatial separation along the streamwise direction. The latter
is calculated from temporal signals and by using Taylor’s
hypothesis. Since only u and v were measured, axisymme-
try along the x axis is invoked, e.g. Dqq = Duu +2Dvv. The
w spectra measured by Wygnanski & Fiedler (1970) in the
mixing layer indicate that this assumption is closely satis-
fied over almost all wavenumbers (see their Fig. 26).

Figures 1(a) and 1(b) show spectra and structure func-
tions of u,v,q and θ at x = 2.5D,y = y0.5 (y0.5 is the
transverse position at which the mean longitudinal velocity
U = Uc/2, with Uc the mean longitudinal velocity at y = 0).
The wavenumber and spatial separation are normalized by
δ , the momentum thickness of the shear layer. In agreement
with the studies of Fulachier & Dumas (1976); Fulachier &
Antonia (1984), the analogy between the spectral distribu-
tions of θ 2 and q2 is very well satisfied at nearly all scales.
However, the energy distribution of θ at a given scale dif-
fers significantly from that of either u and v. This gives fur-
ther strength to the appropriateness of the analogy between
θ 2 and q2. Note however that the spectral distributions
of u,v,θ and q2 collapse in a narrow range of wavenum-
bers (kδ ∼ 0.5), where a bump is easily discernible. This
bump of energy is associated with the presence of coherent
Kelvin-Helmholtz vortices which results from the presence
of the mean shear. This underlines that the energy produc-
tion mechanism of u,v and θ acts at the same wavenumber
and is rather similar.

The spectra and structure functions at y = y0.5 and
1.5D ≤ x ≤ 4D are displayed in Figs 2(a) and 2(c) together

with the ratios Eqq/Eθθ and Dqq/Dθθ presented in Figs.
2(b) and 2(d). A careful analysis of Figs 2(a) and 2(c) indi-
cates that the analogy between θ 2 and q2 is well satisfied at
all scales, in the range 1.5 ≤ x/D ≤ 3, before a rather sudden
change in behaviour beyond x = 3.5D where the analogy is
now only satisfied at large scales, but not at small scales. As
indicated in Figs. 2(b) and 2(d), departures from a perfect
agreement between Eqq and Eθθ or Dqq and Dθθ can be as
large as 25% at small scales.

In summary, the present measurements illustrate the ef-
fect of the mean shear on the degree of analogy between q
and θ . As the magnitude of the mean temperature and ve-
locity gradient decreases, the small scales start becoming
shear-independent, whilst the largest scales continue to be
driven by production effects. Spectra and structure func-
tions at different y, not presented here, corroborate this. We
have thus clear experimental evidence that in flows and at
scales for which the production is dominant (either shear
or mean temperature gradient), the analogy between the ki-
netic energy and the temperature variance holds satisfacto-
rily. Note that these results hold when r is measured along
only one (virtual) spatial direction, that of the mean flow.
These scales are artificially homogeneous, because they are
derived from one-point temporal measurements, with the
help of Taylor’s hypothesis. Further limitations of this will
be discussed later.

ANALYTICAL ARGUMENTS FOR ANALOGY
IN A MORE GENERAL CONTEXT

The previous section was devoted to a comparison be-
tween statistics of q and θ inferred from hot-and cold-wires
measurements. This is however somewhat limiting because
the increment r⃗ can only be calculated from temporal mea-
surements and Taylor’s hypothesis, and therefore, r⃗ ∥ e⃗x, the
direction of the mean flow. In the following, we provide an-
alytical arguments for the ’θ 2 − q2’ analogy, for any flow,
and for the general case when r⃗ is indeed a vector.

To do this, transport equations for Dqq(⃗r) and Dθθ (⃗r)
will be written and compared.

We assume the classical incompressibility hypothe-
sis ρ = constant, as well as ν = constant. Instantaneous
Navier-Stokes equation (free from external forcing) is first
written for the total velocity Ui, viz.

∂Ui

∂ t
+U j

∂Ui

∂x j
= − ∂ P

∂xi
+

∂
∂x j

[
ν τi j

]
, (1)

with τi j = ∂Ui
∂x j

+
∂U j
∂xi

. We now consider two points of the

flow, x⃗+ and x⃗−, separated by the increment r⃗ such as x⃗+ =
x⃗− + r⃗. For economy of writing, the following abbreviations
are applied





U±
i = Ui(⃗x±)

P± = P(⃗x±)
τ±

i j = τi j (⃗x±)

∂±
i = ∂x±

i .

.
Following the procedure given in Hill (2001) or

Danaila et al. (2004), Eq. (1) is then written at these two
points, viz. in x⃗+

∂tU+
i +∂+

j (U+
j U+

i ) = −∂+
i P+ +∂+

j (ν+τ+
i j ) (2a)
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Figure 1. (a) Pre-multiplied spectra kEββ (k) and (b) compensated structure functions Dββ /r2/3 of β ≡ u,v,q,θ at x = 2.5D
and y = y0.5.
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Figure 2. (a) Pre-multiplied spectra and (c) compensated structure functions of q and θ for 1.5D ≤ x ≤ 4D, y = y0.5. In (a)
and (c), spectra and structure functions have been shifted upwards by a factor 2. Ratios (b) Eqq/Eθθ and (d) Dqq/Dθθ for
1.5D ≤ x ≤ 4D, y = y0.5. The dash-dotted lines correspond to a departure of 50%.

and in x⃗−

∂tU−
i +∂+

j (U−
j U−

i ) = −∂−
i P− +∂−

j (ν−τ−
i j ). (2b)

Because x⃗+ and x⃗− are independent points, then ∂+
i ( )− =

∂−
i ( )+ = 0. We further consider that the mean velocity

field is sufficiently uniform for its spatial increments to be
negligible compared with those of the random field, namely
∆U i ≪ ∆ui. Moreover, we consider the shear to be uniform
at each point. Hence, subtraction of Eq. (2b) from Eq. (2a)

provides

D
Dt

∆ui +(∂+
j u+

j +∂−
j u−

j )∆ui +∆
(
u j∂ jU i

)
=

−(∂+
i +∂−

i )∆P+(∂+
j +∂−

j )∆(ντi j), (3)

where ∆() = ()+ − ()− and D
Dt ≡ ∂t +U j∂ j is the material

derivative. Note that the mean velocity as well as its gradi-
ents with respect to a fixed, laboratory frame, are considered
to be the same for the two points. This equation is then mul-
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tiplied by 2∆ui and (time) averaged. After straightforward
calculations, Danaila et al. (2004), the final result is

D
Dt (∆ui)2 + ∂

∂X j

u+
j +u−

j
2 (∆ui)2

+ ∂
∂ r j

∆u j(∆ui)2 +2∆ui∆u j
∂U i
∂x j

=

−2∂Xi ∆P∆ui +2ν ∂ 2

∂ r2
j
(∆ui)2

−2ε+ −2ε−, (4)

where ε is the mean energy dissipation rate and superscripts
+ and − indicate values at the two points. Note that each
term in Eq. (4) depends on the vector r⃗.

The transport equation for (∆θ)2 is

D
Dt (∆θ)2 + ∂

∂X j

u+
j +u−

j
2 (∆θ)2

+ ∂
∂ r j

∆u j(∆θ)2 +2∆u j∆θ ∂T
∂x j

=

+2a ∂ 2

∂ r2
j
(∆θ)2

−2εθ
+ −2εθ

−, (5)

where εθ is the mean dissipation rate of the scalar variance,
a is the thermal diffusivity and T is the mean temperature.
For the sake of simplicity, the mean temperature gradient
(as the mean velocity gradient) is considered uniform, but a
similar development may be carried out for mean tempera-
ture gradients (or, shear) slightly inhomogeneous over large
scales. Again, all terms depend on the vector r⃗.

The first two conditions that are required for the anal-
ogy to be valid are that the Prandtl number Pr ≡ ν

a ≈ 1, and
the pressure diffusion term in Eq. (4) is negligible. The
latter may be neglected in locally homogeneous flows, Hill
(2001). Note that local homogeneity along any space di-
rection is a less restrictive requirement than local isotropy.
Flows developing sufficiently far from the boundaries will
easily satisfy this condition, in contrast to a flow close to
and along a direction normal to the wall. However, as shown
by e.g. Antonia & Kim (1991) and Antonia et al. (2009), v
contributes little to q2 near the wall and therefore the con-
tribution ∂y∆P∆v remains negligible. In other words, along
the directions with strong inhomogeneity, the contribution
to the pressure-diffusion term is expected to remain small.
Therefore Eqs. (4) and (5) are mathematically analogous
for locally homogeneous but anisotropic flows.

Further, three flow categories may be distinguished.
I) First, the purely decaying flows, in which the production
terms are absent, such as decaying grid turbulence in which
the passive scalar is injected through a mandoline. For these
flows, albeit homogeneous and isotropic, the analogy be-
tween q and θ is not tenable and an explanation was pro-
vided using the energy transport equations in both spectral
space (Danaila & Antonia (2009)) and real space (Danaila
et al. (2012)). The key-point is a simple closure for the
energy transferred at each scale by turbulent fluctuations,
based on a characteristic time which accounts for the strain
of the largest scales.
II) Second, we consider flows dominated by large-scale pro-
duction effects. The decay and turbulent diffusion terms

may be considered as negligible. Therefore, the equations
for α (≡ ui or θ ) formally written for scales which are ei-
ther within the RSR (Restricted Scaling Range) or exceed
those scales in that range:

∂
∂ r j

∆u j(∆α)2 +2∆u j∆α
∂M
∂x j

= −2εα
+ −2εα

−, (6)

where M is the mean value of the variable α (either U i
or T ). Since local isotropy does not hold, each term depends
on r⃗. Dividing Eq. (6) by εα

+ + εα
− and using an energy

transfer model (Danaila et al. (2012)) results in

∂
∂ r j

∆u j(∆α)2

εα
+ + εα

− ∝
Qα (⃗r)
τ (⃗r)

, (7)

where Qα (⃗r) is the energy of α effectively transferred at
scale r⃗. For isotropic flows, this quantity was defined such
as, Danaila et al. (2012),

Qα,iso(r) ∝ r
d(∆α)2

dr
. (8)

For anisotropic flows, a possible definition of Q(⃗r) is as fol-
lows

Qα,aniso(⃗r) ∝ r⃗∇⃗r(∆α)2(⃗r). (9)

An experimental validation for Eq. (7) was provided in de-
caying grid turbulence by Danaila et al. (2012). Further
investigations are necessary to test this model in shear tur-
bulence.

The function τ (⃗r) represents the characteristic time at
scale r⃗ and can be defined from the local characteristic strain
rate felt by each scale, which accounts for the total strain
imposed by the larger scales. One expression was provided
and discussed in Thiesset et al. (2013). Because τ (⃗r) only
depends on the velocity field, together with the hypothesis
that the Prandtl number is very nearly equal to 1, it is obvi-
ous that τ is the same for both the dynamic and scalar fields,
independently of whether or not local isotropy holds.

Therefore, with these hypotheses, it is straightfor-
ward to show that when the production terms are domi-
nant, say along a particular direction y, functions (∆q)2(⃗r)
and (∆θ)2(⃗r) behave similarly if and only if functions
∆u∆v dU

dy /(ε+ + ε−) and ∆θ∆v dT
dy /(εθ

+ + εθ
−) behave

similarly. Because, from the one-point energy budget equa-
tions, dU

dy /(ε) and dT
dy /(εθ ) are constants, it follows that

one sufficient condition for the similarity θ 2 −q2 to hold, is
that functions ∆u∆v and ∆θ∆v behave similarly for any in-
crement r⃗. Evidence for the reasonable analogy between
∆v∆u and ∆v∆θ is provided by Fig. 3, at different x.
The analogy impairs as x decreases, most likely because
the shear strength decreases, whereas the decay effect in-
creases. These functions were calculated for separations
along r⃗ ∥ e⃗x. Departures from a better collapse may be
attributed to the presence of the decay in this flow. Had
these structure functions been evaluated for real, spatial
separations, possible discrepancies among them might be
attributed to the spatial variation of the mean gradients
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shifted upwards for increasing values of x.

(dU/dy and dT/dy). Because these functions are calcu-
lated from hold/cold wires measurements which are one-
point measurements, these gradients are artificially constant
for all scales.

Therefore, we have demonstrated, albeit after making
some reasonable hypotheses, that one sufficient condition
for the second-order structure functions of q and θ to be
similar in flows dominated by production effects, is that
functions ∆u∆v and ∆θ∆v behave in a similar fashion over
scales r⃗.

We now examine more closely the transport equations
for ∆u∆v and ∆θ∆v. In flows dominated by production ef-
fects only, transport equations for these functions can be
written. The methodology is classical and we will only de-
scribe it briefly. Starting from the Navier-Stokes equations,
the transport equation for ∆u is written and multiplied by
∆v. Symmetrically, the Navier-Stokes equation for v is used
to derive the transport equation for ∆v which is then mul-
tiplied by ∆u. Adding both equations and time averaging,
the transport equation for ∆u∆v is obtained. The most dom-
inant term is (∆v)2 dU

dy . A similar development for the trans-
port equation for ∆θ∆v may be carried out and, the most
dominant term is (∆v)2 dT

dy . If dU/dy and dT/dy are al-
most constant over the scales considered, which is artifi-
cially the case when Taylor’s hypothesis is used, then the
forcing terms in the transport equations for ∆θ∆v and ∆u∆v
are proportional. Therefore, ∆θ∆v and ∆u∆v behave in a
similar fashion over the largest scales, at which the produc-
tion term is dominant.

This result may be further reinforced if a Prandtl-type
mixing-length model is written, viz.

∆u∆v ∝ Qv
1/2r

dU
dy

, (10)

and

∆θ∆v ∝ Qv
1/2r

dT
dy

, (11)

where Qv = r d(∆v)2

dr . This model brings further arguments

to the analogy between ∆θ∆v and ∆u∆v, and hence to that
between (∆θ)2 and (∆q)2.

The model is reasonably supported by the experimental
data, as illustrated by Fig. 4(a) which compares measured
∆v∆u with Eq. (10). There is good agreement for all x. Sim-
ilarly, Fig. 4(b) compares the measured ∆v∆θ with the dis-
tribution of ∆v∆θ obtained from Eq. (11). The agreement
is reasonable for large scales, but impairs for the smallest
scales.

III). Third, we consider the widest variety of flows, in
which the production and the decay, as well as other effects,
coexist. Therefore, the θ 2 − q2 analogy is not expected to
hold perfectly. The degree with which the analogy is satis-
fied is reflected by the contribution of the production term
to the one-point energy budget, which represents the large-
scale limit for the two-point energy budget. Formally, the
one-point energy budget equation for α(≡ q2,θ 2) can be
formally written as

εα = Prodα +Decayα +Diff α +Molecα , (12)

where Prod stands for the production, Decay for the de-
cay term, Diff for the diffusion (turbulent and pressure-
diffusion), and Molec represents the molecular effects.

The ratio Rα = Prodα
εα

is a relevant parameter to de-
scribe the degree at which the analogy is expected to hold.
For Rq2 ≈ Rθ 2 ≈ 1, the production term is dominant and
the analogy should hold along each direction, provided the
Schmidt number is nearly 1. For small values of Rq2 and
Rθ 2 , the production term is negligible and the analogy can-
not hold.

1 CONCLUSIONS
We presented experimental and analytical investiga-

tions of the analogy between the the passive scalar field θ
and the dynamical field, in particular the total kinetic en-
ergy q2. The analogy between the transport equations of
θ 2 and q2 is most likely to be valid under the constraint of
statistical homogeneity (negligible effect of pressure) and
for a Schmidt (or Prandlt) number equal to 1 (molecular or
viscous diffusion dominates in the same range of scales).
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Figure 4. Distributions of a) ∆v∆u and the proposed model, and b) ∆v∆θ and the proposed model, as a function of r/δ , for
1.5D ≤ x ≤ 4D, y = y0.5 and shifted upwards for increasing values of x.

Simultaneous hot- and cold-wire measurements were
made in a slightly heated axisymmetric shear layer. They
illustrated the effect the mean shear exerts on the analogy
between θ 2 and q2. As the magnitude of the mean temper-
ature and velocity gradient decreases, the small scales be-
come shear-independent, whilst the largest scales continue
to be driven by production effects. There is clear exper-
imental evidence to show that in flows and at scales for
which the production dominates (either shear or mean tem-
perature gradient), the analogy between the kinetic energy
and the temperature variance holds reasonably well.

We have also provided analytical explanation for this
behaviour, based on a simple model which is reasonably
validated against experimental data. Specifically,
i) local isotropy is not necessary for the similarity θ 2 − q2

to be valid.
ii) a key factor for the similarity to hold is the presence
of the production term in the one-point kinetic energy
budget equation. When only production is present, a simple
closure of this term based on a Prandtl-type model leads to
simple, analytical solutions to be obtained.
iii) when other effects (e.g., decay) are present, departures
from similarity have been observed.

The support of ARC and ANR is acknowledged.
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