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ABSTRACT 
Large Eddy Simulations (LES) have been used to simulate 
the development, separation, reattachment and down-
stream recovery of the flow over a smoothly contoured 
ramp. Five different subgrid models have been compared 
on a grid of intermediate resolution containing 19.2 mil-
lion cells and the effect of grid resolution has been exam-
ined by studying the behavior of one model on four differ-
ent grids varying between 2.4 and 153.6 million cells. All 
LES models capture the main flow features, but the results 
on the intermediate and fine grids generally show better 
agreement with the experimental data. 

 
INTRODUCTION 
External flows around ships, submarines, cars, trains and 
airplanes and internal flows in e.g. turbomachinery are of-
ten complicated and fully three-dimensional (3D) and con-
tain curved surfaces, pressure gradients, rotation effects 
and other complicated non-equilibrium effects. In these 
situations equilibrium turbulent boundary layers may no 
longer exist, and the boundary layer properties become 
obfuscated, and separation may occur in the presence of a 
pressure gradient. The understanding and predictive capa-
bilities of non-equilibrium boundary layers are less well 
understood compared with that of equilibrium flows. The 
study of boundary layer separation, reattachment and 
downstream recovery is important as they influence the 
performance of many engineering applications such as the 
ones mentioned. Reynolds Averaged Navier-Stokes 
(RANS) simulations typically provide meager predictions 
of separated flow while Large Eddy Simulation (LES) is 
showing an improved capability in this regard. 

The aim of this paper therefore is to improve our cur-

rent understanding of high Reynolds (Re) turbulent sepa-
rating flow around curved geometries using LES. More 
specifically we consider the flow over the contoured ramp 
of Song et al. (2000) and Song & Eaton (2004), which is a 
well-defined flow exhibiting a small and shallow but dis-
tinct separation bubble far downstream on the ramp. Ex-
perimental surface pressures along the ramp and velocity 
profiles across the channel at different locations are avail-
able for comparison. We use an in-house LES code devel-
oped within the framework of OpenFOAM, Weller et al. 
(1996). This code includes most modern subgrid models 
and here we focus on the use of the Wall Adaptive Local-
ized Eddy (WALE) viscosity model of Nicoud & Ducros 
(1999), the Mixed Model (MM) of Bardina et al. (1980) 
and Bensow & Fureby (2008), the Localized Dynamic k-
Equation Model (LDKM) of Kim & Menon (1999), the 
One Equation Eddy Viscosity Model (OEEVM) of Yoshi-
zawa & Horiuti (1985), and an Implicit LES formulation 
(ILES), Fureby & Grinstein (2002). We compare the accu-
racy of these different models on a grid of intermediate 
resolution containing 19.2 million cells as well as the ef-
fect of mesh resolution on the simulated results by study-
ing the LDKM model on four different grids varying be-
tween 2.4 million and 153,6 million cells.  

 
THE CONTOURED RAMP 
The contoured ramp experiments against which the simu-
lations will be compared were carried out in a closed-loop 
wind tunnel, DeGraaf & Eaton (1999), with a rectilinear 
test section of 0.152×0.711×3.000 m3. For this experiment 
a special insert was placed into the rectangular test section 
to form the ramp geometry. The physical domain is then a 
flat plate followed by a smoothly contoured ramp and an-
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other flat plate region. The upstream approach channel is 
2.000 m long and the radius of curvature of the ramp is R= 
0.127 m, while its length and height are LR=0.070 m and 
h=0.021 m, respectively. The channel section following 
the ramp has a length of 0.700 m. An upper wall is present 
0.131 m above the floor of the ramp, far enough that the 
two boundary layers are separated by a core flow whose 
height is equal to about three boundary layer thicknesses 
at the inlet of the computational domain. The experimental 
study is summarized by Song et al. (2000) and Song & 
Eaton (2004), and consists of time-averaged and rms ve-
locity profiles from customized Laser Doppler Anemom-
etry (LDA) measurements at numerous cross sections up-
stream of, along, and downstream of the contoured ramp, 
as well as wall-pressure data 

Simulations of this flow have previously been report-
ed by Wasistho & Squires (2001), using 2D RANS based 
on the Spalart & Allmaras (1994) and Durbin (1991) v2-f 
models, and LES, using 2.93 million cells using the dyna-
mic Smagorinsky model (Germano et al., 1991) and a pre-
curser boundary layer simulation to account for the gradu-
ally developing turbulent flow along the lower wind tun-
nel wall. Radhakrishnan et al (2006) studied this flow us-
ing DES, using 1.58 and 5.70 million cells, based on the 
Spalart-Allmaras model (Nikitin et al., 1999) and stochas-
tic forcing of the RANS-LES transition region, together 
with a pre-curser boundary layer simulation similar to that 
utilized by Wasistho & Squires (2001). El-Askary (2009) 
computed this flow using Implicit LES, using 1.74 million 
cells, again together with a pre-curser boundary layer sim-
ulation similar to that of Wasistho & Squires (2001). 

The results are generally reasonably good when com-
pared with the experimental data, but all simulations share 
the use of pre-curser boundary layer simulations to handle 
the gradually developing turbulent flow along the lower 
wind tunnel wall and a relatively narrow spanwise width 
together with periodic boundary conditions. The range of 
grids examined is also rather narrow. 

 

 
 

Figure 1. Schematic of the computational domain used in 
this study. 
 

In the LES reported here the computational domain 
has been extended to account for the entire upstream ap-
proach channel, at the beginning of which a fixed velocity 
profile together with a zero Neumann condition for the 
pressure is applied. At the outflow a Dirichlet condition is 
used for pressure together with a zero Neumann condition 
for the velocity. No-slip conditions are applied on the top 
and bottom walls and slip conditions are used on the lat-
eral sides of the computational configuration being 0.200 
m apart. For this comparison four topologically similar 
grids have been generated with 2.4 Mcells (very coarse), 
8.1 Mcells (coarse), 19.2 Mcells (intermediate) and 153.6 
Mcells (fine), respectively. Based on the inflow velocity, 

v0=20.4 m/s, and the step height of the ramp the integral 
Re number of this flow is 28,560, which together with the 
complex, partially or intermittently separating and reat-
taching, flow makes this case challenging. Figure 1 shows 
a schematic of the computational configuration. 

 
LARGE EDDY SIMULATION (LES) MODELING 
LES is based on a separation of scales using spatial filter-
ing, Sagaut (2001). Flow physics on scales larger than the 
filter width, ∆, are resolved, whereas flow physics on scal-
es below ∆ are modeled using a subgrid model. For a lin-
ear viscous incompressible fluid, the LES equations are, 
 
∂t (v)+∇⋅(v⊗v)=−∇ p+∇⋅(S−B),   ∇⋅v=0,  (1) 
 
where v is the velocity, p the pressure, S=2νDD  the visc-
ous stress tensor, ν the viscosity and D=12 (∇v+∇v

T )  the 
rate-of-strain tensor and B=(v⊗v−v⊗v)  the subgrid stress 
tensor, representing the effects of the unresolved transport 
of momentum on the resolved flow. Here, and in what fol-
lows, overbars indicates filtered variables. 

In order to close (1) and to represent the physics of the 
unresolved flow, B must be modeled. By manipulating the 
raw and filtered momentum equations a transport equation 
for B can be formulated. This equation is of the form, 
 
∂t (B)+∇⋅(B⊗v)=−(B∇v+∇vTB)−∇⋅J+Φ−E,  (2) 
 
in which P=B∇v+∇vTB is the exact production term, J the 
redistribution tensor, Φ  the subgrid pressure strain corre-
lation, and E the subgrid destruction term. An mathemati-
cal solution to (2) was recently offered by Li et al. (2009) 
in terms of matrix exponentials, such that, 
 
B=23 kI−νkDD+ντk (DD2+12 (WD−DW))+…,  (3) 
 
in which W=12 (∇v−∇vT ) , νk a subgrid viscosity and τk a 
subgrid time scale. Following Bensow & Fureby (2008), 
the intrinsic nature of B encourages a decomposition into 
Leonard, cross and Reynolds tensors, 
 
B=(v⊗v−v⊗v)+(v⊗ #v−v⊗ #v+ #v⊗v− #v⊗v)+( #v⊗ #v− #v⊗ #v ),  (4) 
 
of which the Leonard tensor L=(v⊗v−v⊗v)  can be explic-
itly computed, thus reducing the need for modeling to the 
sum of the cross and Reynolds tensors. 

Here, five different closure models will be examined: 
Three of these models are based on the linear terms in (3) 
corresponding to the Boussinesq approximation. The first 
of these is the Wall Adapting Local Eddy Viscosity Model 
(WALE) of Nicoud & Ducros (1999) in which, 
 
B≈−2νkDD=−cw2 Δ2

(GD⋅GD )3/2
(D⋅D)5/2+(GD⋅GD )5/4( )DD,  (5) 

 
where cw=0.325. The second of these is the One Equation 
Eddy Viscosity Model (OEEVM), of Yoshizawa & Hori-
uti (1985) which is based on a k equation,  
 
B≈−2νkDD=−2ck ∆k1/2DD,  
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∂t (k)+∇⋅(kv)=ckΔk1/2||D||2+∇⋅(νk∇k)−cεk3/2/Δ,  (6) 
 
where ck=0.07 and cε=1.03 as evaluated from an inertial 
range spectra. The third model of this class is the Localiz-
ed Dynamic k-Equation Model (LDKM) of Kim & Menon 
(1999) which is also based on (6) but with model coeffici-
ents computed dynamically using scale-similarity, 
 
ck=−(L⋅M)/(2M⋅M),  cε=2νeffΔ((∇v)2−(∇v)2 )/K3/2 ,   (7) 
 
in which 2K=tr(L) and M=ΔK1/2D . The fourth model ex-
amined is the Mixed Model (MM) of Bardina et al. (1980) 
and Bensow & Fureby (2008) based on (4) in which, 
 
B≈(v⊗v−v⊗v)−2ck ∆k1/2D,  (8) 
 
in which k is obtained from the OEEVM (6). The fifth and 
last model examined in an Implicit LES (ILES) model of 
Fureby & Grinstein (2002), in which the raw (or unfilter-
ed) Navier-Stokes equations are solved using monotonic-
ity preserving flux reconstruction algorithms that can be 
shown (Fureby & Grinstein, 2002), to result in a leading 
order truncation error of the form, 
 
B≈C(∇v)T+(∇v)CT+χ2 (∇v)d⊗(∇v)d+…,  (9) 
 
formally resembling the matrix exponential solution (3) to 
the transport equation (2), in which C=χ(v⊗d)  with χ be-
ing a non-linear function of the flux limiter Ψ. 

The code used is OpenFOAM, Weller et al. (1996), in 
which the discretization is based on unstructured finite 
volumes. For all LES models the discretization uses linear 
reconstruction of the convective fluxes and central differ-
encing of the viscous flux terms with compact 2nd order 
stencils and time integration is performed by explicit 2nd 
order backward differencing which guarantees overall 2nd 
order accuracy and low numerical diffusion. For ILES the 
convective fluxes are reconstructed using the monotonici-
ty preserving Gamma algorithm of Jasak (1996) based on 
the blending of a linear and an upwind biased scheme us-
ing a non-linear flux limiter. The pressure-velocity coupl-
ing is handled with the PISO algorithm, and the equations 
are solved sequentially with CFL<0.3. 
 
RESULTS 
Figure 2 shows the resulting flow in terms of iso-surfaces 
of the second invariant of the velocity gradient tensor, λ2, 
the instantaneous streamwise velocity, vx, and the friction 
velocity, uτ, at the lower wall from the LES-WALE model 
on the intermediate grid. The LES-WALE result is repre-
sentative of the different LES models investigated on the 
intermediate and fine grids, whereas fewer vortical struc-
tures are observed in the boundary layers on the coarse 
grid. Downstream of the inflow the initial velocity profile 
gradually transitions into a turbulent velocity profile as the 
boundary layer develops. The transition length is different 
for different subgrid models and is strongly dependent on 
the grid resolution but with the intermediate and fine grids 
showing similar transition behaviors. Further downstream, 
the boundary layer continues to develop and progressively 

thickens towards the ramp section. At the ramp, a shallow 
recirculation region is observed for all LES, with the sepa-
ration and reattachment locations differing for each mod-
el. Not surprisingly, these locations approach those of the 
experiments with increasing grid resolution irrespective of 
the subgrid model. 

 

 
(a) 

 
(b) 

 
Figure 2. The flow in the computational domain in terms 
of the instantaneous velocity, vx, iso-surfaces of the se-
cond invariant of the velocity gradient tensor, λ2, colored 
by vx, and the friction velocity, uτ, at the bottom wall from 
(a) the LES-WALE model and (b) the LES-MM model on 
the intermediate grid. 

 
Figure 3 presents a magnified view of the downstream 

ramp section. The large-eddy structure near the wall in the 
approach boundary layers are adapted in several ways: by 
the mean shear, the blocking of the wall-normal velocity 
component and by the internal shear layers produced by 
large eddies as they impinge and scrape along the walls. 
Elongated axial vortices are formed with length scales that 
are several times the boundary layer height. The lower bo-
undary layer separates approximately between x/LR≈0.50 
and 0.60 and reattaches around x/LR≈1.40. The recircula-
tion bubble fluctuates significantly in time, and along the 
spanwise direction, and is dynamically driven by the back-
flow. Downstream, the flow recovers quickly to a virtually 
fully developed turbulent channel or boundary layer flow. 
The boundary and shear layer vortical structures coalesce 
to form clusters of vortical structures that continues to ag-
glomerate into large scale axial and Ω-shaped flow struc-
tures that dominate further downstream whilst continuing 
to increase in size and entrainment strength. 

 

 
 

Figure 3. Iso-surfaces of the second invariant of the velo-
city gradient tensor, λ2, colored by the axial velocity, vx, 
downstream of the contoured ramp from the LES-WALE 
model on the intermediate grid. 
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Figure 4 compares the time-averaged pressure coeffi-
cient, cp=(〈p〉−p0)/12 v02 , in which p0 is the freestream pres-
sure, on the bottom wall between the experimental data 
and the different LES model predictions and for the differ-
ent grids using the LES-LDKM model. On the lower wall, 
there is a favorable pressure gradient approaching the 
ramp up to x/LR≈0.20 due to the wall curvature effect. Af-
ter that, the flow expansion dominates, causing an adverse 
pressure gradient over the remainder of the ramp. There is 
a short plateau around the trailing edge of the ramp, x/LR≈ 
1.00. This indicates the presence of a separation bubble 
over the trailing edge as seen in figures 2 and 3. The di-
viding streamline of the separation bubble acts like a flat 
wall over a short length around the trailing edge. The ad-
verse pressure gradient extends to x/LR≈2.00. The bounda-
ry layer displacement thickness drops after the trailing 
edge of the ramp, resulting in a mild favorable pressure 
gradient at x/LR≈2.00, after which it relaxes back to ap-
proximately zero pressure gradient. The results of the stat-
ic pressure on the top wall (not shown) reveal that there is 
no separation on the top wall and show the static pressure 
increases monotonically over the ramp. 

The grid resolution is found to influence the wall pres-
sure distribution so that: on the coarse grid modest agree-
ment with the experimental data is observed, but with in-
creased grid resolution the agreement rapidly improves. 
On the intermediate grid all LES models capture the fa-
vorable pressure gradient approaching the ramp but un-
derestimate the (negative) pressure at the beginning of the 
ramp. Similarly, all LES models capture the strong ad-
verse pressure gradient over the rest of the ramp, but with 
notably different predictions of the short plateau around 
the trailing edge of the ramp, corresponding to the separa-
tion bubble. Best agreement is obtained with the WALE 
and LDKM models, whereas the MM noticeably overpre-
dicts the pressure around the reattachment line, suggesting 
a too small separation bubble. 

 

(a) 

(b) 
 

Figure 4. Time-averaged pressure coefficient for (a) dif-
ferent grids and (b) for different models on the intermedi-
ate grid. Legend: (¡) experiments, (—) LES-WALE, (—) 
LES-MM, (—) LES-OEEVM, (—) LES-LDKM and (—) 
LES-ILES, (…) very coarse grid, (– . –) coarse grid, (—) 
intermediate grid and (– –) fine grid. 

 

Figures 5a and 5b compares the time-averaged axial 
velocity, 〈vx 〉/v0 , in the equilibrium region (x/LR=–2.00), 
at the start of the ramp (x/LR=0.00), near the mean separa-
tion (x/LR=0.77), in the separation bubble (x/LR=1.00), 
and in the recovery region (x/LR=4.00), between the ex-
perimental data and the different LES model predictions 
and for the different grids using the LES-LDKM model. 
In figures 5a and 5b, the profiles are positioned at the val-
ues of x/LR to emphasize the relative shape of the time-
averaged streamwise velocity compared to the shape of 
the wind tunnel and ramp. The ramp results in a favorable 
pressure gradient up to x/LR≈0.20, causing the boundary 
layer to thin. Once in the adverse pressure gradient, the 
boundary layer thickness grows rapidly and the profiles 
develop an inflection point. In the experiments of Song & 
Eaton (2004) the boundary layer separates at x/LR≈0.77 
and reattaches at x/LR≈1.40, whereas in all LES separation 
occurs slightly earlier, around x/LR≈0.50 to 0.55, but with 
reattachment taking place between /LR≈1.30 and 1.40. The 
length of the separation bubble is therefore predicted to be 
slightly longer than what the experiments suggests. 

The height of the separation bubble, which is defined 
to be where the mean velocity is equal to zero, is approxy-
mately LR/10 at the trailing edge. The backflow in the sep-
aration bubble is clearly visible at the trailing edge. The 
recovery of the time-averaged flow is rather fast down-
stream of reattachment. By x/LR≈2.00, the time-averaged 
flow profile has filled out considerably, although it still 
shows a considerable deficit in the outer layer. The time-
averaged flow profiles at x/LR≈4.00 and 7.00, however, 
have essentially recovered almost to a fully developed flat 
plate boundary layer.  

 

(a) 

(b) 
 

Figure 5. Time-averaged streamwise velocity for (a) dif-
ferent grids and (b) for different models on the intermedi-
ate grid. Legend: (¡) experiments, (—) LES-WALE, (—) 
LES-MM, (—) LES-OEEVM (—) LES-LDKM and (—) 
LES-ILES, (…) very coarse grid, (– . –) coarse grid, (—) 
intermediate grid and (– –) fine grid. 

 
All LES models capture the main flow features, but 

the results on the intermediate and fine grids generally 
show better agreement with the experimental data. The ap-
proach boundary layer and separation region are particu-
larly better predicted on the intermediate and fine grids 
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than on the very coarse, and coarse grids. Regarding the 
predictive capabilities of the different LES models we find 
that the very coarse grid appears too coarse to predict the 
mean flow accurately. On the coarse grid the LDKM 
model shows the best overall agreement with the experi-
mental data, whereas on the intermediate and fine grids 
the LDKM, WALE and ILES models all show virtually 
identical results in good agreement with the experimental 
data. Moreover, the MM model show better predictions on 
the coarse grid than on the intermediate and fine grid 
which is unexpected and not yet fully understood. 

Figures 6a and 6b compare the axial rms-velocity fluc-
tuations, vxrms/v0 , in which vxrms= 〈(vx−〈vx 〉)2 〉 is the axial 
rms-velocity fluctuations, in the equilibrium region (x/LR= 
–2.00), at the start of the ramp (x/LR=0.00), near separate-
on (x/LR=0.77), in the separation bubble (x/LR=1.00), and 
in the recovery region (x/LR=4.00), between the experi-
mental data and the different LES model predictions, and 
for the different grids using the LDKM model. Before the 
ramp, the axial rms-velocity peaks close to the inflection 
point of the time-averaged velocity profiles. In the adverse 
pressure gradient region, the axial rms-velocity profiles is 
significantly modified, with considerably wider profiles 
and peak levels about 50% higher than upstream of the 
ramp. Moreover, the peaks shift outwards moving down-
stream remaining in alignment with the inflection point in 
the time-averaged profile. The effects of the time-averag-
ed profile distortion by the adverse pressure gradient ap-
pear to overwhelm the effects of the convex curvature up-
stream of separation. One might expect that the strong 
curvature would cause rapid suppression of the turbulence 
in the outer layer, but these results show that the outer lay-
er axial rms-velocity increase when approaching separa-
tion. At x/LR=4.00 and 7.00 (not shown) the axial rms-
velocity is essentially recovered near the wall, and the 
outer layer peak has decayed to form a plateau of constant 
normal stress, whereas further downstream the original 
profile gradually becomes reestablished. 

 

(a) 

(b) 
 

Figure 6. Axial rms-velocity fluctuations for (a) different 
grids and (b) for different models on the intermediate grid. 
Legend: (¡) experiments, (—) LES-WALE, (—) LES-
MM, (—) LES-OEEVM, (—) LES-LDKM and (—) 
LES-ILES, (…) very coarse grid, (– .) coarse grid, (—) 
intermediate grid and (– –) fine grid. 

All LES models capture the turbulence, but the results 
on the intermediate and fine grids agree better with the ex-
perimental data. The turbulence in the approach boundary 
layer and in the separation region are better predicted on 
the intermediate and fine grids than on the very coarse and 
coarse grids, where it is usually overpredicted. Regarding 
the predictive capabilities of the LES models we find that 
the very coarse grid is too coarse to predict the mean flow. 
On the coarse grid the LDKM model shows the best over-
all agreement with the experimental data, whereas on the 
intermediate and fine grids the LDKM, ILES and WALE 
models all show very similar results, being in good agree-
ment with the experimental data. Moreover, the MM mo-
del show better predictions on the coarse grid than on the 
intermediate and fine grid which is unexpected and not yet 
fully understood. 

Figure 7 shows different aspects of the boundary layer 
flow: The upper figure shows the skin friction distribution 
together with the mean separation and reattachment lines 
from the WALE model on the intermediate grid, whereas 
the lower figure shows a combination of surface stream-
lines in black, vortex lines in dark red and contours of the 
first invariant of the no-slip tensor, Chong et al. (2012). 
The approach flow reveals the classical streaky structure 
of a developed flat plate turbulent boundary layer. The 
WALE, LDKM, ILES models all reveal separation at ap-
proximately x/LR≈0.50 and reattachment at about x/LR≈ 
1.40 which is in agreement with the experimental data of 
Song & Eaton (2004) whereas the OEEVM and in particu-
lar the MM shows somewhat later separation. In particular 
the MM model shows a more shallow separation than the 
other LES models. Following Chong et al. (2012) we note 
that where the first invariant of the no-slip tensor, P, is ze-
ro, the flow is two-dimensional. It can be that although 
most of the surface flow is two-dimensional, the flow is 
3D in regions near critical points, in regions where there 
are kinks in the vortex lines and close to separation and 
reattachment. Close to the three-dimensional regions ap-
parent turbulent structures will instigate flow reversals 
close to the wall. This is most apparent, as expected, in the 
region between the separation and reattachment lines. 

 

 
 

Figure 7. Surface flow pattern: Skin friction distribution 
together with separation and reattachment lines in red and 
blue, respectively, (top) and surface streamlines in black, 
vortex lines in dark red and contours of the first invariant 
of the no-slip tensor (bottom). 
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CONCLUDING REMARKS 
We have used LES to simulate the development, separate-
on, reattachment and gradual downstream recovery of the 
flow over the smoothly contoured ramp experiment of 
Song et al. (2000) and Song & Eaton (2004). Five subgrid 
models have been compared on a mesh of intermediate 
resolution containing 19.2 million cells, and the effect of 
mesh resolution has been examined by studying the be-
havior of the LDKM model on four different grids varying 
between 2.4 and 163.6 million cells.  

For the time-averaged pressure coefficient, Cp, on the 
lower wall a comparison of the five different models on 
the intermediate grid shows that all models capture the fa-
vourable pressure gradient approaching the ramp, but that 
all models underestimate the pressure drop to some degree 
at the beginning of the ramp. Best agreement is obtained 
with the WALE and LDKM models, whereas the MM no-
ticeably overpredicts the pressure around the reattachment 
line. The plots of Cp along the lower wall calculated using 
the LDKM model on all four grids are very similar, indi-
cating that the grid resolution has minimal effect on Cp, as 
expected.  

For the mean velocity, a comparison of the five mod-
els on the intermediate (19.6 Mcells) grid shows that the 
LDKM, WALE and ILES models all show virtually iden-
tical behavior, in good agreement with the experimental 
data, while the MM and OEEVM show departures from 
the experimental data in the separation region. As expect-
ed, the LDKM results show closer agreement with the ex-
perimental data as the grid is refined.  

The results for the rms-velocity fluctuations show a 
similar trend to those of the mean velocity. On the inter-
mediate grid the results of the WALE and LDKM models 
are very similar and agree well with the experimental re-
sults. The MM and OEEVM again show significant dif-
ferences with the experimental results in the separation 
region, and the ILES model also performs poorly in this 
region. Once again, as the mesh is refined, the LDKM re-
sults show closer agreement with experiment.  

In summary, we find that the LDKM and WALE sim-
ulation results are very similar and provide best overall 
agreement with experiment, and that for the axial velocity 
and rms-velocity fluctuations the LDKM results agree be-
ter with the experimental data as the grid is refined, while 
the Cp results appears virtually independent of the grid 
resolution. 

 
REFERENCES 

Bardina J., Ferziger J.H. & Reynolds W.C.; 1980, 
“Improved Subgrid Scale Models for Large Eddy Simula-
tions”, AIAA Paper 80-1357. 

Bensow R. & Fureby C., 2008, “On the Justification 
and Extension of Mixed Models in LES”, J Turb., 8, p 
N54. 

Chong M.S., Monty J.P., Chin C. & Marusic I.; 2012, 
“The Topology of Skin Friction and Surface Vorticity 
Fields in Wall-bounded Flows”, J. Turb., 13, N6 

DeGraaff D.B. & Eaton J.K.; 1999, “Reynolds Num-
ber Scaling of the Turbulent Boundary Layer on a Flat 
Plate and on Swept and Unswept Bumps”, Report TSD-
118, Stanford University. Stanford, USA. 

Durbin P.A.; 1991, “Near-wall Turbulence Closure 
without Damping Functions”, Theo. Comp. Fluid Dyn., 3, 
p 1. 

El-Askary W.A.; 2009, “Turbulent Boundary Layer 
Structure of Flow over a Smooth-Curved Ramp”, Comp. 
Fluids, 38, p 1718. 

Fureby C. & Grinstein F.F.; 2002, “Large Eddy Simu-
lation of High-Reynolds-Number Free and Wall-Bounded 
Flows”, J. Comp. Phys., 181, p 68. 

Germano M., Piomelli U., Moin P. & Cabot W.H.; 
1991, “A Dynamic Subgrid-scale Eddy Viscosity Model”, 
Phys. Fluids, 3, p. 1760. 

Jasak, H.; 1996, “Error Analysis and Estimation for 
the Finite Volume Method with Application to Fluid 
Flows”, Ph.D. thesis, Dept. Mech. Eng., Imperial College 
of Science, Technology and Medicine. 

Kim W.-W. & Menon S.; 1999, “A New Incompressi-
ble Solver for Large-Eddy Simulations”, Int. J. Num. Flu-
id Mech., 31, p 983. 

Li Y., Chevillard L., Eyink G. & Meneveau C.; 2009, 
“Matrix Exponential-based Closures for the Turbulent 
Subgrid-Scale Stress Tensor”, Phys. Rev. E., 79, 016305. 

Nicoud F., & Ducros F.; 1999, “Subgrid-Scale Stress 
Modeling Based on the Square of the Velocity Gradient 
Tensor”, Flow, Turb. & Comb., 62, p 183. 

Margolin L.G. & Rider W.J.; 2002, “A Rationale for 
Implicit Turbulence Modelling”, Int. J. Num. Methods in 
Fluids, 39, p 821. 

Nikitin N.V., Nicoud F., Wasistho B., Squires K.D.& 
Spalart P.R.; 2000, “An Approach to Wall Modeling in 
Large-Eddy Simulations”, Phys. Fluids, 12, p 1629. 

Radhakrishnan S., Keating A. & Piomelli U.; 2006, 
“Large Eddy Simulations of High Reynolds-Number Flow 
over a Contoured Ramp”, AIAA 2006-0899. 

Sagaut P.; 2001, “Large Eddy Simulation for Incom-
pressible Flows”, Springer Verlag, Heidelberg. 

Song S., DeGraaff D.B. & Eaton J.K.; 2000, “Experi-
mental Study of a Separating, Reattaching and Redevel-
oping Flow over a Smoothly Contoured Ramp”, Int. J. 
Heat & Fluid Flow, 21, p 512. 

Song S. & Eaton J.K.; 2004, “Reynolds Number Ef-
fects on a Turbulent Boundary Layer with Separation, Re-
attachment, and Recovery”, Exp. in Fluids, 36, p 246. 

Spalart P.R. & Allmaras S.R.; 1994, “A One-Equation 
Turbulence Model for Aerodynamic Flows”, La Recher-
che Aerospatiale, 1, p 5. 

Yoshizawa A. & Horiuti K.; 1985, “A Statistically-
Derived Subgrid Scale Kinetic Energy Model for Large 
Eddy Simulation of Turbulent Flows”, J. Phys. Soc. Ja-
pan, 54, p 2834. 

Wasistho B. & Squires K.D.; 2001, “Numerical Inves-
tigation of the Separated Flow over a Smoothly Contour-
ed Ramp”, Turb. Shear Flow Phen., 2, p 405 

Weller H.G., Tabor G., Jasak H. & Fureby C.; 1997, 
“A Tensorial Approach to CFD using Object Oriented Te-
chniques”, Comp. in Physics, 12, p 629. 

 
 
 
 



7 
 

 


