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ABSTRACT
We present a fundamentally new autonomic subgrid-

scale closure for large eddy simulations (LES) that solves a
nonlinear, nonparametric system identification problem in-
stead of using a predefined turbulence model. The auto-
nomic approach expresses the local SGS stress tensor as the
most general unknown nonlinear function of the resolved-
scale primitive variables at all locations and times using a
Volterra series. This series is analogous to a Taylor series
expansion in both time and space, and incorporates nonlin-
ear, nonlocal, and nonequilibrium turbulence effects. The
series introduces a large number of convolution kernel coef-
ficients that are found by solving an inverse problem to min-
imize the error in representing known subgrid-scale stresses
at a test filter scale. The optimized coefficients are then pro-
jected to the LES scale by invoking scale similarity in the
inertial range and applying appropriate renormalizations.
This new closure approach avoids the need to specify a tur-
bulent constitutive model and instead identifies an optimal
model on the fly. Here we present the most general formu-
lation of the new autonomic approach and outline an inverse
modeling method for optimizing the coefficients. We then
explore truncations of the series expansion and demonstrate
the effects of regularization and sampling on the optimal co-
efficients. Finally, we perform a priori tests of this approach
using data from direct numerical simulations of homoge-
neous isotropic and sheared turbulence. We find substantial
improvements over the Dynamic Smagorinsky model, even
for a 2nd order time-local truncation of the present closure.

INTRODUCTION
Fluid flows of engineering and scientific importance

are often turbulent and therefore involve an enormous range
of spatial and temporal scales. The computational cost of
resolving this full scale range is prohibitive for most appli-
cations, so large eddy simulations (LES) are commonly em-
ployed to reduce the scale range that must be resolved. Con-
ceptually, the LES equations achieve a scale separation of
the original Navier-Stokes equations by convolving the true
velocity vector u(x, t) with a low-pass filter kernel G∆LES ,

where ∆LES is the LES filter scale. The resulting filtered
velocity field is denoted ũ(x, t). In practice, the filtering
is often done implicitly when discretizing onto a numerical
grid, with the consequence that “subfilter” scale quantities
become “subgrid” scale quantities.

Making the common assumptions that G∆LES is linear,
preserves constants, and commutes with time and space
derivatives, the Navier-Stokes equations can be filtered to
obtain the incompressible LES equations given by
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where τi j = ũiu j− ũiũ j is the unclosed subfilter-scale stress
and the density has been absorbed into the pressure. When
the convolution is implicitly performed by the numerical
discretization, filtered variables become resolved variables
and the subfilter stress τi j (x, t) becomes the subgrid-scale
(SGS) stress. This stress must be modeled in terms of re-
solved quantities to close the LES equations.

The primary challenge in LES is to formulate a phys-
ically accurate closure model for the SGS stresses. Many
models have been proposed [see Meneveau & Katz (2000)
for a review] and the most widely used models invoke prin-
ciples such as scale similarity (Bardina et al., 1980), the
gradient transport hypothesis (Smagorinsky, 1963), and dy-
namic filtering (Germano et al., 1991). Nearly all such
models employ a specific constitutive relation between the
SGS stress tensor and one or more resolved-scale physical
quantities, such as the strain rate, vorticity, or other quan-
tities derivable from the resolved velocity and pressure. To
date, however, no SGS model has been found that in a pri-
ori tests accurately produces values of τi j(x, t) that ensure
the correct space- and time-varying momentum and energy
exchange between the resolved and subgrid scales.

In this paper a new autonomic closure for LES is out-
lined that in a priori tests correctly reproduces the local in-
stantaneous subgrid stresses τi j(x, t). The autonomic clo-
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sure is outlined in the next section, followed by initial a pri-
ori tests on data from direct numerical simulations (DNS).
Finally, a summary and an outline for future work is pro-
vided at the end of the paper.

AUTONOMIC CLOSURE APPROACH
The Autonomic LES closure (abbreviated “ALES”) is

a fundamentally new approach to closing the LES equations
that does not require a predefined constitutive model for the
SGS stress. Instead, the approach allows the simulation it-
self to determine the best local relation between the subgrid
stresses and all resolved state variables by solving a system
identification problem on the fly. We express the local SGS
stresses in terms of the most general nonlinear nonparamet-
ric functional, a Volterra series of the resolved state vari-
ables. As a nonparametric system identification technique,
this approach avoids the need to specify a predefined opera-
tor relating the resolved state variables to the SGS stress ten-
sor. The terms in the Volterra series represent convolutions
with all possible linear and nonlinear combinations of the
state variables at all locations and times, allowing this ap-
proach to capture important nonequilibrium, nonlocal, and
time lag effects (Hamlington & Dahm, 2008).

The kernel coefficients in the series can be found by
posing an inverse modeling problem at a coarser scale
where the SGS stresses are known from standard test fil-
tering processes. The state variables are also known at the
test scale, and therefore optimal kernel coefficients can be
determined. Inverse modeling techniques such as regular-
ization and sampling can be used to control the stability
and computational cost of the solution. The resulting ker-
nel coefficients identify the optimal local turbulent consti-
tutive relationship. As long as the test and LES scales are
within the inertial range, the relationship between resolved
quantities and SGS stresses is approximately scale invariant
and coefficients optimized at the test scale can be applied at
the LES scale using appropriate renormalizations. The term
autonomic is applied to the closure because this process is
self-optimizing without exogenous inputs or training data,
and it allows enormous flexibility in accounting for differ-
ent physical effects and flow configurations.

Fundamental Closure Assumption
Fundamentally, the search for a subgrid-scale closure

amounts to formulating a closed expression for τi j in terms
of primitive state variables obtained from the solution of
governing equations. For an incompressible flow governed
by the LES equations in Eqs. (1) and (2), the state variables
are the resolved-scale velocities ũi and pressure p̃. In order
to account for nonlocal and nonequilibrium effects the form
of the closure should not preclude the possibility that τi j at
a particular point and time depends on primitive variables at
other points and times. Additionally, characteristic time and
length scales should be included in the closure to help en-
force dimensional and scale consistency. The most general
SGS closure can thus be written as

τi j(x, t) = F
[
ũ(x′, t ′), p̃(x′, t ′),x′, t ′,L ,T ,M

]
(3)

where x′ denotes the entire spatial domain, t ′ denotes all
times, L is a characteristic length scale (e.g., the filter
width ∆), T is a characteristic time scale (e.g., the resolved
strain rate magnitude), and M is a characteristic mass (e.g.

ρL 3). All existing SGS models assume that there is some
functional form for F that can describe the SGS stresses
with the inputs listed in Eq. (3). In the ALES approach, we
find the optimal functional form for F by solving a non-
linear nonparametric system identification problem. By al-
lowing any linear or nonlinear combination of the state vari-
ables to appear in the function F , it is possible to represent
a wide range of mathematical operations, including tempo-
ral and spatial derivatives, filters, multi-point differences,
and multi-point products. Taking a nonparametric approach
means that there is no need to specify a priori any particular
operator or mathematical structure for F .

Series Expansion for the SGS Stress
The most general nonlinear nonparametric polynomial

functional for F can be expressed using a Volterra series
(Schetzen, 2006). This series is analogous to a Taylor series
expansion in both time and space, and is an extension of
the classical impulse response function for linear systems.
The terms in the series are multidimensional convolutions
with all possible linear and nonlinear combinations of the
input data at all times. For systems with fading memory
and bounded inputs, the Stone-Weierstrass theorem guaran-
tees that any continuous function can be uniformly approx-
imated to within arbitrary precision by a Volterra series of
sufficient but finite order (Boyd & Chua, 1985). This en-
sures that the ALES approach is capable of representing the
true SGS stresses with arbitrarily high fidelity.

The Volterra series for a continuous system with scalar
inputs and outputs y(t) = f (x(t)) is a series of multidimen-
sional convolution integrals given by

y(t) = h(0)+
∫

R

h(1) (τ1)x(t− τ1)dτ1 +

∫

R2

h(2) (τ1,τ2)x(t− τ1)x(t− τ2)dτ1dτ2 +

∫

R3

h(3) (τ1,τ2,τ3)x(t− τ1)x(t− τ2)x(t− τ3)dτ1dτ2dτ3 + . . .

where h(n) are Volterra kernels. In operator form, this se-
ries is y(t) = H0 +H1x(t)+H2x(t)+ . . .Hnx(t)+ . . ., and
the convolutions comprise the nth order operators Hnx(t)
which are characterized by the h(n) kernels. These kernels
are formally defined as the partial derivatives of f

h(0) = f (x̄) , h(1) (τ1) =

(
∂ f

∂x(t− τ1)

)

x̄
,

h(2) (τ1,τ2) =

(
∂ 2 f

∂x(t− τ1)∂x(t− τ2)

)

x̄
, . . .

but with an unknown f they can be found using an optimiza-
tion procedure. It is worth noting that the expansion is linear
in the kernel coefficients despite describing a nonlinear sys-
tem. Furthermore, a linearization of the expansion returns
the impulse response function which completely character-
izes the behavior of a dynamical linear system.

A Volterra series can analogously be written for dis-
crete systems with a finite dimensional input vector x =
[x1,x2, . . . ,xm]

T ∈ Rm and a scalar output. In the discrete
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case the nth order operators for n≥ 1 are

Hn (x) =
m

∑
i1=1

m

∑
i2=1
· · ·

m

∑
in=1

h(n)in

n

∏
j=1

xi j (4)

where the operator is composed of mn coefficients.
In order to apply the Volterra series expansion in

the ALES approach, we create an input vector ṽ(t) =[
vec
(
ũ∗1(x, t)

)
,vec

(
ũ∗2(x, t)

)
,vec

(
ũ∗3(x, t)

)
,vec(p̃∗(x, t))

]T
that represents the vectorized form of the nondimension-
alized resolved velocity and pressure fields. The series
expansion for the SGS stress is then given by

τi j =
L 2

T 2

[
h(0)i j +

L

∑
n=1

M

∑
m1=1
· · ·

M

∑
mn=1

h(n)mn,i j

n

∏
k=1

ṽmk

]
(5)

where each unique (i, j) element of the SGS tensor has its
own set of kernel coefficients, L is the order of the expan-
sion, and M =m×t where the “memory” in the series spans
t timesteps. We refer to the full set of coefficients as h.

Determination of Kernel Coefficients
The general relation for τi j in Eq. (5) introduces an ex-

ponentially growing number of kernel coefficients. While
infinite order and fading memory representations are possi-
ble, the representation will be truncated here to finite order
and memory to reduce computational cost. The coefficients
will be found using inverse modeling and optimization tech-
niques, which are key steps in the ALES approach. This
section introduces an objective function based on test fil-
tering that quantifies error in the ALES model and drives
the optimization process. We invoke a scale similarity argu-
ment to apply ALES coefficients obtained at the test filter
scale to the LES scale. Finally, we solve a regularized in-
verse modeling problem to determine optimal coefficients.

Test Filter Objective Function We introduce
a test filter scale, ∆1, that is larger than the LES filter scale,
∆LES, and characterizes an additional filter, G∆1 . This new
filter defines the test filtered velocity field û(x, t). For
simplicity, we take both G∆1 and G∆LES to be spectrally
sharp filters that are exact projection operators such that
̂̃u = û. Additionally, we define scale-specific SGS stresses
τ∆LES

i j = ũiu j − ũiũ j and τ∆1
i j = ûiu j − ûiû j, where τ∆LES

i j is
sought to close the governing LES equations. Test filtering
the LES field ũ(x, t) with G∆1 results in known values for
the τ∆1

i j (x, t) and û(x, t) fields. This is sufficient to define
an objective function J (v̂,h) ∈ R that measures error in
the ALES model results for τ∆1

i j (x, t) as

J (v̂,h) = ‖τ∆1
i j (x, t)− τ∆1

i j,ALES (x, t; v̂,h)‖2 (6)

where τ∆1
i j,ALES (x, t; v̂,h) represents the modeled stresses at

scale ∆1 produced by Eq. (5) for a given order and memory
and ‖·‖ denotes the `2 norm over all (i, j) elements. The set
of kernel coefficients h that minimizes J (v̂,h) identifies
the optimal functional representation of τ∆1

i j (x, t) in terms
of multidimensional convolutions of the input state vector
according to Eq. (5). Since any element of h can be found

to be zero during the optimization for different flows or ge-
ometries, there is fundamentally no predefined turbulence
model or constitutive equation in this autonomic approach.

Projection to the LES Scale As long as ∆1
and ∆LES are both in the scale-similar inertial range and the
LES filters are spectrally sharp, the functional relationship
F from Eq. (3) and expanded in Eq. (5) should be con-
stant at both scales. The ALES coefficients that parameter-
ize F must then also be scale invariant throughout the iner-
tial range. Consequently, we use the coefficients optimized
at ∆1 in our ALES expression for τ∆LES

i j . Although the ker-
nel coefficients parameterizing F are scale invariant, the
actual SGS stresses themselves change as the wavenumber
of the filter cutoff changes. We account for this by making
our characteristic time and length scales T and L scale-
specific. We use L∆1 = ∆1 and T∆1 = (2Ŝi jŜi j)

−1/2 in
the optimization at our test scale, and L∆LES = ∆LES and
T∆LES = (2S̃i jS̃i j)

−1/2 at the LES scale. This allows the
ALES results for τ∆LES

i j to reflect the changes in intensity
and scale of the SGS stresses when transitioning from ∆1
to ∆LES. Furthermore, we apply the coefficients to quan-
tities separated by a normalized length scale. In practice,
this means that any stencil applied as part of a spatial trun-
cation must have its grid point spacing nondimensionalized
by the filter length scale. This test filtering and scale simi-
larity approach is crucial for the autonomy of ALES. There
is thus no need for prior DNS results, training data, or user
specified parameters. Instead, the closure leverages scale
invariant properties of inertial range turbulence to perform
a self-contained optimization. The same scale invariance al-
lows us to apply the test filter-optimized coefficients at the
LES scale.

Inverse Modeling The ALES optimization can
be posed as the discrete inverse modeling problem

min J = ‖d−Gh‖2 (7)

where J ∈ R is the objective function to be minimized, d
is an column vector of known SGS stresses sampled from
τ∆1

i j (x, t), G is a matrix whose rows represent the polyno-
mial arguments to the Volterra convolution integrals at each
point where τ∆1

i j (x, t) is sampled, and h is column vector
containing the h kernel coefficients in vector form.

Posing the ALES approach as an inverse modeling
problem is a powerful way to reveal insights into the op-
timization process. First, the cost of the optimization pro-
cess is driven by the size of the matrix G. The width of G
is determined by the order and memory applied to Eq. (5).
The height of G is determined by the number of samples
taken of τ∆1

i j . A sparse sampling reduces the computational
cost, but also ensures that the observations are statistically
independent. The rank of G reveals how closely a solution
vector h can match the observations d, and the conditioning
number of G determines how stable the solution h is when
there is noise in the observations.

Regularizing the Inverse Problem
Inverse modeling problems are typically ill-posed due

to ill-conditioning of G and consequently exhibit extreme
sensitivity to changes in the observation data. As a result,
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noise or small variations in the test filtered SGS stresses in
d can result in large changes in the inverse solution h. This
instability can be seen in the generalized inverse solution h†
based on the Moore-Penrose pseudoinverse of G, given by

h† = VpΣΣΣ−1
p UT

p︸ ︷︷ ︸
G†

d =
p

∑
i=1

UT
i d
si

Vi (8)

where G† is the pseudoinverse, si are the singular values of
G, the p refers to the compact form of the singular value
decomposition of G with p nonzero singular values, and i
refers to the ith column of U or V. The columns of U form
a basis spanning the data space and the columns of V form
a basis spanning the model space. The inner product of Ui
and the data vector d yields a scalar weighting factor for
the model space basis vector Vi. The model space basis
vectors corresponding to small singular values are typically
highly oscillatory and noisy while the basis vectors for large
singular values are typically smooth. Random noise in the
observations will make d likely to have a component in the
direction Ui corresponding to a very small si singular value.
As a result, the Vi model space basis vector will dominate
the solution h† and amplify the noise.

Instability in the inverse modeling solution is undesir-
able because the solution will reflect noise in the data rather
than underlying physics. This is often addressed with a
regularization technique that adds additional information to
prevent overfitting and represents a tradeoff between solu-
tion variance and error or bias in the fit. Common regular-
ization techniques include augmenting the objective func-
tion with a weighted `1 or `2 norm of h that penalizes large
model parameter values.

In this study we employ the truncated singular value
decomposition (TSVD) to regularize our solution. In the
TSVD regularization we truncate the summation in Eq. (8)
at p′ < p, where p′ is chosen based on the discrete Picard
condition which seeks a p′ where UT

i d/si < 1 . This pro-
cess reduces the number of model space basis vectors used
in h†, but avoids instabilities due to small singular values.
The TSVD procedure thus finds an optimal truncation of
the Volterra series based on the numerical properties of its
discretized inverse modeling form. This also accelerates the
ALES process since G† can be found once and used repeat-
edly in finding h† for each unique SGS stress component.

A PRIORI TESTS OF THE ALES CLOSURE
The ALES closure is evaluated here using a priori tests

on DNS data for homogeneous isotropic turbulence (HIT)
and homogeneous sheared turbulence (HST). A priori test-
ing is a necessary but not sufficient step in determining
whether the closure will succeed in a forward a posteri-
ori test. We use de-aliased 256× 256× 256 pseudospec-
tral DNS results from a previously published and validated
study (Schumacher, 2004) and apply spectrally sharp filters
at ∆LES and ∆1 to synthetically generate the LES and test
filtered fields. With these filtered fields and the true DNS
fields, the exact SGS stresses can be calculated at any scale
and used to evaluate the ALES approach. The ALES results
at ∆LES are compared with the exact SGS field and with
results from the Dynamic Smagorinsky model outlined by
Lilly (1992), which is a commonly used turbulence model
that also employs a test filter and least squares optimization.

We first present HIT results for the unregularized objective
function in Eq. (7) and then discuss results of the TSVD
approach using HST data.

Unregularized HIT Results
To demonstrate a minimal working example of the

ALES closure, we truncate Eq. (5) to only include 1st and
2nd order terms. We also neglect the pressure field, con-
sider only the final timestep t f , and limit the spatial ex-
tent to a 3× 3× 3 stencil around the sampling location.
This shortens our input vector to a 81× 1 column vector
ṽ =

[
ũ∗1
(
x1, t f

)
, . . . ũ∗1

(
x27, t f

)
, . . . , ũ∗3

(
x27, t f

)]T where xi
refers to a location within the 3×3×3 stencil. The physi-
cal separation between stencil points is also normalized by
the filter length scale. We sample τ∆1

i j at every 10th point
when creating d, set ∆1 = 2∆LES, and seek a single solution
vector h for each unique SGS stress component that is opti-
mal over the entire flow domain. One could seek an optimal
h at each location, but the inverse problem would then be
underdetermined.

The initial a priori tests are performed without any reg-
ularization and determine optimal kernel coefficients at the
test filter scale ∆1 using the relation

τ∆1
i j =

L 2
∆1

T 2
∆1

[
h(0)i j +

2

∑
n=1

27

∑
m1=1

27

∑
m2=1

h(n)mn,i j

n

∏
k=1

v̂mk

]
(9)

corresponding to a Volterra series model of order 2 and with
no memory of past inputs. The optimal ALES coefficients
are found at ∆1 by solving the discrete least squares mini-
mization in Eq. (7) for the truncated expression in Eq. (9)
using a QR decomposition. The size of the G matrix created
by this sampling frequency is 17576× 3403. The optimal
coefficients are then applied at every location in the domain
at ∆LES using the relation

τ∆LES
i j =

L 2
∆LES

T 2
∆LES

[
h(0)i j +

2

∑
n=1

27

∑
m1=1

27

∑
m2=1

h(n)mn,i j

n

∏
k=1

ṽmk

]
(10)

where L and T are here calculated using quantities at ∆LES
and the discrete spatial locations indexed by xi in ṽ have
been rescaled based on the ratio ∆1/∆LES = 2.

The ALES closure does an excellent job of capturing
the structure, location, and intensity of the SGS stresses at
∆1 where the coefficients are optimized. However, the true
test of the ALES closure and the scale invariance of the co-
efficients is performance at ∆LES, shown in Figure 1. The
true SGS stress structures are smaller, sharper, and more
intermittent than at the test filter scale, but the ALES clo-
sure is able to capture nearly all of these features while the
Dynamic Smagorinsky model does not. This agreement is
remarkable considering the severe truncation applied in Eq.
(10) and noting that for each SGS stress component every
location in the 3D field uses the same set of ALES coeffi-
cients.

The accuracy of the ALES closure can be quantita-
tively assessed by considering maps of the SGS stress er-
rors shown in Figure 2. The error is defined as εi j (x) =
τ∆LES,True

i j − τ∆LES,ALES
i j . The ALES errors are largely fea-

tureless and relatively small, demonstrating that ALES is
indeed capturing the SGS stress correctly. The Dynamic
Smagorinsky model, by contrast, has errors of the same
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Figure 1. HIT velocity and SGS stress fields at the LES scale from DNS, ALES, and the Dynamic Smagorinsky model show
that ALES captures the stresses remarkably well.
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Figure 2. LES scale errors for 2nd order ALES (top row) and the Dynamic Smagorinsky model (bottom row). These error
fields confirm that ALES is substantially more accurate than the Dynamic Smagorinsky model.

size, intensity, and structural complexity as the true SGS
field itself, showing that it poorly represents the actual local
stresses. ALES also appears to be approximately Galilean
invariant in initial tests where u1 (x, t) was increased by a
large constant but h was unchanged, revealing no new spa-
tial patterns or bias in the ALES error field.

HST and Truncated SVD Results
We also test ALES on HST data and apply a TSVD

regularization. The a priori analysis of HST uses the same
ALES truncations as in Eqs. (9) and (10) and also the same
stencil, sampling, and QR decomposition as in the HIT
analysis. The solution is regularized by keeping approxi-
mately 1/7th of the original 3403 nonzero singular values
based on the discrete Picard condition. One set of ALES
coefficients is found for the entire volume, whereas the Dy-
namic Smagorinsky model requires averaging across homo-
geneous directions, producing an optimization for each hor-
izontal plane. This suggests ALES may be an advantageous
approach in complex or inhomogeneous flows. The TSVD
approach allows us to calculate the truncated pseduoinverse
G† = Vp′ΣΣΣ−1

p′ UT
p′ once, and then quickly find the TSVD

model solution for each component of the SGS stresses with
a simple matrix-vector multiplication h† =G†d. The ALES
estimate of the SGS stresses is then given by the TSVD
model solution and the full G matrix as τττ∆LES

i j = Gh†.

Figure 3 shows the HST ALES SGS field at ∆LES and
the error maps are shown in Figure 4. The ALES clo-
sure is again substantially more accurate than the Dynamic
Smagorinsky model. The `2 norm of the error at ∆LES de-
creases by 14.4% with HST when using the TSVD approach
and p′= 500. Conversely, with HIT we only find a 3.6% de-
crease in the `2 norm of the error, suggesting that the ALES
process is more prone to overfitting the flow realization for
HST than HIT.

SUMMARY AND DISCUSSION
We have presented a fundamentally new and highly

promising autonomic approach, termed ALES, to estimat-
ing the SGS stresses needed for closure in LES of turbulent
flows. The approach is based on the most general nonlinear
nonparametric functional form relating the local subgrid-
stress tensor to all resolved-scale variables at all points and
times. This closure is fully adaptive and self-optimizing,
allowing the relation between the subgrid stresses and the
resolved-scale fields to change freely as the local turbulence
state changes. Lack of comparable adaptivity in conven-
tional SGS models, which are based on predefined consti-
tutive equations for the subgrid stresses in terms of the re-
solved strain rate or other resolved-scale quantities, may be
a key reason why such models have failed to give accurate
results for the subgrid stresses.
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Figure 3. HST velocity and SGS stress fields at the LES scale from DNS, ALES, and the Dynamic Smagorinsky model show
that the TSVD regularization helps ALES capture the SGS stresses in challenging sheared flows.
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Figure 4. The LES scale errors confirm that the TSVD regularized ALES approach provides more accurate results than the
Dynamic Smagorinsky model.

Results presented here from a priori tests of ALES in
homogeneous isotropic and sheared turbulence show that
the new approach provides highly accurate estimates for
the subgrid stress fields τi j(x, t) using only the resolved-
scale fields available in large eddy simulations. This is true
even for a stringent truncation to 2nd order velocity terms,
no memory, and a small (3×3×3) stencil, which can only
accommodate second-order spatial central differences. The
accuracy of these test results, even for this small stencil,
suggests that the autonomic closure can be implemented in
a computationally efficient manner in practical LES. More-
over, the stencil size and memory can be increased if higher-
order gradients or time derivatives of resolved-scale quan-
tities are needed to accurately capture states of turbulence
that may occur under strong nonequilibrium or other ex-
treme conditions.

Future work will focus on integrating the ALES clo-
sure into a forward model simulation and performing a pos-
teriori tests. Additional work will characterize the trade-
offs between truncation, regularization, and computational
cost. Implementing the general Volterra series expansion
and ALES optimization will require additional attention
when considering filters with broad spectral support. Fi-
nally, it may be possible to extend this autonomic closure
approach to steady and unsteady Reynolds averaged Navier-
Stokes simulations and find a comparable model-free auto-
nomic closure for the Reynolds stresses.
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