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ABSTRACT
Direct numerical simulation of homogenous isotropic

turbulence (HIT) have been conducted at relatively high
Reynolds numbers. By analyzing the DNS database, char-
acteristics of GS-SGS energy transfer are investigated in
detail. Especially, dependences of GS-SGS energy trans-
fer by Leonard, cross and Reynolds terms, and the to-
tal GS-SGS energy transfer on filter-width to Kolmogorov
scale, ∆/η , are revealed. The characteristics of conven-
tional eddy viscosity models and scale similarity model are
investigated in terms of the GS-SGS energy transfer. It is
found that Smagorinsky model can predict energy transfer
by Reynolds term well for large ∆ where Reynolds term
is dominant and Bardina model has a potential to predict
cross term well especially for small ∆ where cross term is
dominant. Based on the assumption of local equilibrium
and the fact that the Smagorinsky coefficient is the function
of ∆/η , a new method to predict ∆/η by using only re-
solved scale and a new subgrid-scale (SGS) model, a scale
self-recognition mixed SGS model, are proposed. Supe-
riority of the scale self-recognition mixed SGS model has
been demonstrated through static and dynamic tests in HIT
and turbulent channel flow. The correlation coefficient be-
tween the total GS-SGS energy transfer obtained from fil-
tered DNS data and statically predicted by the proposed
model is very high with any size of ∆ in HIT. Compared
with the conventional SGS models, the present model dy-
namically gives the best prediction of both instantaneous
and statistical characteristics of the turbulent flows.

INTRODUCTION
With the development of computational resources and

technologies, large eddy simulation (LES) is of grow-
ing importance on computer aided design system. Sev-
eral subgrid-scale (SGS) models have been developed.
Smagorinsky model (Smagorinsky (1963)) is a basic eddy
viscosity model but the model coefficient depends on flow
fields. Therefore, dynamic Smagorinsky model (Germano
et al. (1991); Lilly (1992)) is widely used, whose model co-
efficient is computed dynamically under the assumption of
scale similarity. However, it has much numerical cost and
averaging procedure of the coefficient is required to over-
come instability problem. Kobayashi (2005) developed co-
herent structure Smagorinsky model whose coefficient is lo-
cally determined by the second invariant of velocity gradi-

ent tensor. The demand of local determination of the coeffi-
cient increases in terms of effective use of massive-parallel
computer systems. On the other hand, Bardina model (Bar-
dina et al. (1980)) is based not on eddy viscosity concept
but on scale similarity assumption.

Conventionally, it has been supposed that in turbulence
there are eddies having various scales hierarchically and
that energy transfer from large- to small-scale occurs. For
a few decades, intensive direct numerical simulation (DNS)
studies have been conducted to clarify the relation between
turbulent coherent structures and the energy transfer. In
our previous study, temporal-spatial intermittent distribu-
tions of strong forward and backward scatter are observed
around turbulent coherent structures even for homogenous
isotropic turbulence (HIT), and characteristics of GS-SGS
energy transfer depend on the ratio of the filter width to
turbulent scale (Tanahashi et al. (2006)). In complex tur-
bulence in real applications, it is important to predict local
GS-SGS energy transfer accurately. Further clarification of
the energy transfer is necessary for evaluating and develop-
ing SGS models.

In this study, detailed investigation of the GS-SGS en-
ergy transfer and evaluation of characteristics of SGS mod-
els in terms of the energy transfer are conducted by analyz-
ing DNS results of HIT at high Reynolds number. From
the results, a new method to predict a ratio of filter width to
Kolmogorov length by using only resolved scale and a new
SGS model, a scale self-recognition mixed SGS model, are

Table 1. Numerical condition for DNS of homogeneous
isotropic turbulence.

Reλ RelE N3 L/lE Su′ Fu′

175.4 1518.5 5123 6.39 -0.536 6.25

222.7 2087.6 6403 6.63 -0.534 6.34

256.1 2899.1 8003 6.36 -0.538 6.47

287.6 3694.1 9603 6.47 -0.564 6.97

344.1 4575.7 12803 6.48 -0.567 7.20

393.8 5779.4 15363 6.19 -0.554 7.52
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Figure 1. Instantaneous distributions of vortical structures of GS component (white), positive GS-SGS energy transfer (yel-
low) and negative GS-SGS energy transfer (blue) at Reλ = 344.1: (a) ∆ = 15η , (b) ∆ = 30η , (c) ∆ = 60η and (d) ∆ = 120η .

proposed and the superiority is demonstrated through static
and dynamic tests in HIT. In addition, the applicability of
the present model is demonstrated in a turbulent channel
flow.

DNS DATABASE OF HOMOGENEOUS
ISOTROPIC TURBULENCE

DNS of homogeneous isotropic turbulence up to Reλ =
344.1 have been conducted. Here, Reλ denotes Reynolds
number based on Taylor micro scale. Spectral methods
are implemented in all directions with fully de-aliasing and
third order Runge-Kutta scheme is applied for time ad-
vancement. The spatial resolution is ηkmax ≈ 1 for all
Reynolds number and the size of the computational domain,
L, has been selected to be larger than 6lE which is enough
to resolve the largest scale motions of turbulence. Here,
η , kmax, lE denote Kolmogorov scale, the maximum wave
number and integral scale, respectively. The numerical con-
ditions are summarized in Table 1, where RelE , N3, Su′ and
Fu′ are Reynolds number based on integral scale, number
of total grid points, skewness and flatness of longitudinal
velocity gradient. The details of numerical method can be
referred to Tanahashi et al. (2002, 2006).

In this study, both sharp cut-off and Gaussian filters are
applied to the DNS data in wavenumber space to obtain the
resolved scale for scale separation. It should be noted that
resolved scale in practical LES cannot be modeled by ap-
plying either a Gaussian filter or a sharp cut-off filter only.
Results with applying both a sharp cut-off filter and a Gaus-
sian filter are shown below.

Figure 2. Dependences of contributions of Leonard, cross
and Reynolds terms to total energy transfer on filter-width
for Reλ = 256.1, 287.6 and 344.1.

FILTER WIDTH DEPENDNCY ON CHARAC-
TERISTICS OF GS-SGS ENERGY TRANSFER

Instantaneous distributions of vortical structures of GS
component, positive GS-SGS energy transfer (forward scat-
ter) and negative GS-SGS energy transfer (backward scat-
ter) at Reλ = 344.1 are shown in Fig. 1. The dependency on
filter-width, ∆, are investigated. Regions of strong forward
and backward scatter are distributed around vortical struc-
tures of GS component in any size of filter-width, while
these structures change from elongated to blunt shapes with
increase in filter-width. Therefore, it is supposed that there
are close relationship between the vortical structures and
GS-SGS energy transfer at each filter-width. It is noted that
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Figure 3. Dependences of correlation coefficient between
GS-SGS energy transfer by Reynolds term (a) and cross
term (b) obtained from DNS and predicted by SGS mod-
els on filter-width for Reλ = 256.1, 287.6 and 344.1.

backward scatter plays an important role on GS-SGS en-
ergy transfer in relatively high Reynolds number turbulence.
Therefore, it is necessary to predict distribution of GS-SGS
energy transfer, including backward scatter, accurately.

To clarify characteristics of the GS-SGS energy trans-
fer in detail, Fig. 2 shows dependences of averaged con-
tributions of Leonard, cross and Reynolds terms to the to-
tal GS-SGS energy transfer, < Eτ >≡< −τi jSi j >, on ∆,
for Reλ = 256.1, 287.6 and 344.1. The averaged contribu-
tion by cross term, < EC >, is the largest for ∆ < 30η and
that by Reynolds term, < ER >, is the largest for ∆ > 30η
while that by Leonard term, < EL >, is low in any size of
∆. As filter width increases, the averaged contribution ratios
by Reynolds, cross and Leonard terms reach to 60%, 30%
and 10%, respectively. These tendencies are independent of
Reynolds number.

These results can further be explained in terms of a
probability density function (PDF) of the energy transfer,
representing the ratio of forward and backward scatter, by
each term (not shown here). For the energy transfer by
Leonard term, the PDF is almost symmetric for any size
of ∆. For cross term, the PDF is not symmetric for small
∆ and relatively symmetric for large ∆. The energy trans-
fer by Reynolds term is mostly positive and its magnitude is
relatively small. The PDF for Reynolds term is asymmetric
in particular for larger ∆. Consequently, the averaged con-
tribution ratio of Leonard term is low in any size of ∆ while
cross term shows the largest contribution for small ∆ and
Reynolds term is dominant for large ∆, respectively.

Figure 4. Dependences of the Smagorinsky coefficient
(CS) on filter-width for Reλ = 256.1,287.6 and 344.1.

STATIC TEST OF CONVENTIONAL SGS MOD-
ELS

Characteristics of eddy viscosity models (Smagorin-
sky (Smagorinsky (1963)), dynamic Smagorinsky (Ger-
mano et al. (1991), Lilly (1992)) and coherent structure
Smagorinsky models (Kobayashi (2005))) and scale sim-
ilarity model (Bardina model (Bardina et al. (1980))) are
investigated in terms of the GS-SGS energy transfer. Here-
after, in figures, they are called SM, DSM, CSM and BM,
respectively. Figure 3(a) shows filter-width dependences of
correlation coefficients between the GS-SGS energy trans-
fer by Reynolds term obtained from filtered DNS data and
predicted by SGS models. The energy transfer, ER, pre-
dicted by Smagorinsky and coherent structure Smagorin-
sky models has a strong correlation with filtered DNS data
for ∆ > 80η and a weak correlation with filtered DNS data
for small ∆ where backward scatter occurs in high vol-
ume fraction of the domain, which cannot be predicted
by these models. On the other hand, Bardina and dy-
namic Smagorinsky models can predict the backward scat-
ter. However, the energy transfer, ER, predicted by Bardina
and dynamic Smagorinsky models correlates poorly with
filtered DNS data in any size of ∆. The scale similarity
assumption could not be realized locally even in the high
Reynolds number turbulence. In Fig. 3(b), the correlation
coefficients between the energy transfer by cross term, EC,
by Bardina model and from filtered DNS data show a high
value even for large size of ∆ while the coefficients decrease
slightly with increase of ∆.

These tendencies of the model prediction for each
term are independent of Reynolds number. Conse-
quently, Smagorinsky model can predict energy transfer by
Reynolds term well for large ∆ where Reynolds term is
dominant and Bardina model has a potential to predict cross
term well especially for small ∆ where cross term is dom-
inant. It is well-known that one model gives a good pre-
diction in some conditions, but it may fail to predict SGS
stress in the other conditions. This is explained by the fact
that the models proposed until now cannot predict the ra-
tio of filter width to Kolmogorov length scale (∆/η). LES
with high accuracy can be conducted by predicting ∆/η .
In addition, ∆/η depends on spatiotemporal intermittency
in turbulence. Therefore, a new method to predict ∆/η by
variables at resolved scale and a new SGS model based on
∆/η are proposed. We name the newly proposed model “a
scale self-recognition mixed SGS model”.
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SCALE SELF-RECOGNITION MIXED SGS
MODEL

The newly developed scale self-recognition mixed
SGS model (SSRM) in this study is written as follows:

τi j = (ūiū j − ūiū j)+( ¯̄uiū j + ūi ¯̄u j −2 ¯̄ui ¯̄u j)

+(−2(CS∆)2|S̄|S̄i j) (1)

CS = C∞(1−αe−β (∆/η)) (2)

∆/η = a
(

2∆6|S̄|S̄i j S̄i j/ν3
)b

(3)

Here, α , β , a and b are model constants. The model for-
mulation is similar to the conventional mixed model. For
Leonard and cross terms, Bardina model with the coefficient
of 1.0 is implemented to satisfy the Galilean invariance. For
Reynolds term, Smagorinsky model is applied. It is noted
that the Smagorinsky coefficient, CS, is not a constant, but
the function of ∆/η .

Figure 4 shows filter-width dependency of CS obtained
exactly from the DNS data. Here, the coefficient Cs is ob-
tained at different ∆/η so that the GS-SGS energy transfer
predicted by the Reynolds term with Smagorinsky model
agrees with the energy transfer evaluated from the DNS
data. CS increases with ∆/η and the asymptotic value (C∞)
is about 0.15 which is smaller than the general value of 0.2
in HIT since Smagorinsky model is evaluated as the model
only for Reynolds term in the present formulation. The pro-
file of CS does not depend on Reynolds number in high
Reynolds number turbulence. Therefore, the constants, α
and β , in Eq. (2) are determined by least square method.

A new method to predict ∆/η by using resolved scale
variables is proposed. From the assumption of local equilib-
rium and the fact that CS is the function of ∆/η , it is found
that ∆/η can be predicted by an indicator which consists
of only GS variables, as shown in Eq. (3). The constants, a
and b are also determined by least square method from DNS
database of HIT in the range of Reλ from 256.1 to 344.1 and
the maximum error is less than about 10%. Equation (3) is
effective to predict ∆/η accurately. To verify the scale self-
recognition mixed SGS model, the correlation coefficient
between the total GS-SGS energy transfer obtained from
filtered DNS data and predicted by the proposed model is
investigated. In any size of ∆, the correlation coefficient
is higher than 0.8. The scale self-recognition mixed SGS
model based on the universal representation of Kolmogorov
length by GS variables can predict spatial distribution of
GS-SGS energy transfer with higher accuracy.

To demonstrate superiority of the scale self-recognition
mixed SGS model, LES of decaying HIT at initial Reλ =
175.4 is dynamically conducted. The results of Smagorin-
sky model with CS = 0.2, Bardina model with CB = 1.0 and
the present model are compared. The initial ∆/ηinit is 11.4
or 22.7 which is 4 and 8 times as large as the DNS gird
size, respectively. Temporal history of turbulent kinetic en-
ergy is shown with the filtered DNS for comparison in Fig.
5(a). Without dependency on ∆/η , Smagorinsky model
overpredicts decay of turbulence at an early stage and the
decay rate becomes slower with time. It is noted that dy-
namic Smagorinsky model with average process of CS in
homogenous directions shows the similar tendency. Bar-
dina model predicts decay of turbulent kinetic energy well
at ∆/ηinit = 11.4, but the temporal development at larger
∆/ηinit is very different with the filtered DNS results. The
prediction accuracy by Bardina model strongly depends on
LES grid size. On the other hand, the prediction by the scale
self-recognition mixed SGS model agrees with the DNS re-
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Figure 5. Temporal history of turbulent kinetic energy (a)
and Energy spectra of turbulent kinetic energy (b) at t =

3.0 and Reλ = 175.4 with ∆/ηinit = 11.4 (open) and 22.7
(solid) from filtered DNS and SGS models.

sults better than the other models. To investigate spectral
characteristics of turbulence in detail, Fig. 5(b) shows the
energy spectra predicted by LES and obtained from DNS
results, which are normalized by energy dissipation, ε , and
kinetic viscosity, ν , at t = 3.0. Smagorinsky model under-
predicts the energy in higher wavenumber range for both
LES grid sizes. Bardina model underpredicts the kinetic
energy in lower wavenumber and overpredicts in higher
wavenumber especially in the case of ∆/ηinit = 22.7. On
the other hand, the proposed model agrees with the filtered
DNS much better than the other models. The present model
can represent the GS-SGS energy transfer more accurately.

To compare local prediction accuracy among the mod-
els, instantaneous 2D distributions of one in-plane compo-
nent of velocity are shown in Fig. 6. Smagorinsky model
shows smoother distribution than the DNS results since ki-
netic energy in higher wavenumber decays too much. The
oscillations in higher wavenumber are observed for Bardina
model due to the model properties as mentioned above. The
distribution predicted by the scale self-recognition mixed
SGS model is very close to the filtered DNS results. More-
over, in Fig. 7, instantaneous distributions of vortical struc-
tures of GS component, positive GS-SGS energy trans-
fer (forward scatter) and negative GS-SGS energy trans-
fer (backward scatter) are visualized from filtered DNS and
LES results. As mentioned in Fig. 1, regions of strong for-
ward and backward scatter are distributed around vortical
structures of GS component from filtered DNS database
in Fig. 7(a). Since Smagorinsky model inherently predicts
only forward scatter, regions of strong forward scatter are
found around vortical structures of GS component in Fig.
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Figure 6. Instantaneous 2D distributions of one in-plane component of velocity at t = 3.0 and Reλ = 175.4 with ∆/ηinit =

22.7: (a) filtered DNS, (b) Smagorinsky, (c) Bardina and (d) scale self-recognition mixed models.

7(b). In Bardina model, small-scale distributions of vor-
tical structures of GS component, forward and backward
scatter are observed due to the characteristics of underpre-
diction in lower wavenumber and overprediction in higher
wavenumber in Fig. 7(c). The scale self-recognition mixed
SGS model predicts both forward and backward scatter well
and the distributions of strong forward and backward scat-
ter indicate a similar tendency to the filtered DNS results in
Fig. 7(d).

Finally, the applicability of the present scale self-
recognition mixed SGS model is demonstrated in a turbu-
lent channel flow. Filtered DNS results and dynamic pre-
dictions by SGS models are compared. The details of DNS
condition and method can be referred to Tanahashi et al.
(2004). Figure 8 shows mean velocity and RMS of stream-
wise turbulent velocity at Reτ = 800 obtained from filtered
DNS and predicted by SGS models with ∆ = 2∆DNS. Here,
SMVD denotes Smagorinsky model with van Driest damp-
ing function. The scale self-recognition mixed SGS model
predicts both of the profiles accurately without the damp-
ing function, while Smagorinsky model can predict turbu-
lent statistics accurately in wall turbulence only when the
damping function is used.

From the results, it is evident that the present model
gives the best prediction not only of turbulent statistics but
also of instantaneous local turbulent properties among the
models.

CONCLUSIONS
A new SGS model, a scale self-recognition mixed SGS

model, is proposed. The model formulation is similar to

the conventional mixed model, but the Smagorinsky co-
efficient, CS, is not a constant but the function of ∆/η .
This is based on the fact that Smagorinsky model can pre-
dict energy transfer by Reynolds term well for large ∆/η
where Reynolds term is dominant and Bardina model has
a potential to predict cross term well especially for small
∆/η where cross term is dominant by analyzing the DNS
database of homogenous isotropic turbulence at relatively
high Reynolds numbers. Moreover, a new method to predict
a ratio of filter width to Kolmogorov length by using only
resolved scale is developed based on the assumption of local
equilibrium and the fact that the Smagorinsky coefficient is
the function of ∆/η . Finally, the superiority of the scale
self-recognition mixed SGS model is demonstrated through
static and dynamic tests in homogenous isotropic turbulence
(HIT) and a turbulent channel flow. In HIT, the correlation
coefficient between the total GS-SGS energy transfer ob-
tained from filtered DNS data and statically predicted by the
proposed model is very high with any size of ∆. The present
model dynamically gives the best prediction not only of
turbulent statistics but also of instantaneous local turbulent
properties among the models. In the application to a turbu-
lent channel flow, it is demonstrated that the present model
can predict turbulent statistics accurately without damping
function in wall turbulence.
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