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A review is provided of large and very large scale structures in wall-bounded turbulent flows. Collating from a variety of
sources, a detailed three-dimensional instantaneous and conditionally averaged view of these large-scale events is presented.
The relationship between these events and both the interfacial bulging and the near-wall coherent cycle is investigated, and links
are drawn with the now well-studied processes of amplitude modulation and superposition between the large-scales and the
small-scale turbulence. It is now relatively well accepted that the importance of these large-scale events increases with Reynolds
number. The Reynolds number (and in particular the friction Reynolds number Reτ ), is a measure of the ratio between the large
scales and the viscous length-scale and hence can be considered to be a measure of the scale separation existing in turbulent
boundary layers (Reτ =Uτ δ/ν , where δ is the boundary layer thickness and ν/Uτ , the ratio between the kinematic viscosity and
the friction velocity, is the viscous length-scale). The energy due to the near-wall streaks in the streamwise velocity component
appears in the energy spectra at streamwise and spanwise wavelengths of λ+

x ≈ 1000 and λ+
y ≈ 100 respectively (where the

plus superscript denotes normalisation with the viscous length-scale). The large scale logarithmic energy, appears in the spectra
centered approximated in the log region at λx/δ ≈ 6 and λy/δ ≈ 0.7 (Hutchins & Marusic, 2007). Hence, we can see that the
large-scale structures are approximately 6Reτ/1000 times larger in size than the near-wall cycle. At Reynolds numbers close to
transition, there is little or no separation in scale, but by Reτ ≈ 16000, we expect a scale separation of O(100). In addition to
increasing scale separation, we note that as Reynolds number increases, under viscous scaling, the amount of turbulent energy
contained in these large-scales also increases in comparison to the small-scale energy from the near-wall cycle (which remains
constant). This has two effects. (i) the superimposed large-scale footprint at the wall increases in strength relative to the near-
wall cycle, causing an increasingly prominent large-scale quasi-steady variation of the wall shear stress. As these large-scale
regions of modified wall-shear stress become very large in terms of viscous length-scales, we would expect the size, amplitude
and convection velocity of the near-wall viscous scaled events to locally conform to this modified large-scale value of the shear
stress. Indeed, this response provides the origin of the observed amplitude and frequency modulation observed in the near-wall
region (Mathis et al., 2009, 2013)(ii) a diminishing proportion of the total turbulent production is due to the near-wall region,
with the logarithmic region becoming dominant at Reτ ∼O(10000) (Marusic et al., 2010). Both of these effects might suggest
a decreasing effectiveness at high Reynolds numbers for control strategies that only directly modify the near-wall region. Based
on this observation, several control strategies and experiments that have sought to directly modify the large-scale structures in
the logarithmic and wake regions of higher Reynolds number turbulent boundary layers are investigated. These include: highly
directional riblet surfaces with a capacity to impose a large-scale spanwise periodicity into the logarithmic region (Nugroho
et al., 2013); perturbations to the inlet tripping conditions, which have the ability to modify the boundary layer evolution via
modifications to the large-scale wake region structure; active control of the large-scale log region events using wall-normal jets.
Effective control or interruption of these large-scale structures will require increased understanding of their origins as the flow
evolves from low to high Reynolds number, to this end large-scale novel PIV experiments, both in the conventional wind-tunnel
frame of reference (de Silva et al., 2014), and with a stationary time-resolved PIV system imaging a towed flat plate (Lee et al.,
2014) will also be presented.
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