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ABSTRACT
Compressibility effects are present in many practical

turbulent flows, ranging from shock-wave/boundary-layer
interactions on the wings of aircraft operating in the tran-
sonic flight regime to supersonic and hypersonic engine in-
take flows. Besides shock wave interactions, compressible
flows have additional dilatational effects and, due to the
finite sound speed, pressure fluctuations are localized and
modified relative to incompressible turbulent flows. Such
changes can be highly significant, for example the growth
rates of mixing layers and turbulent spots are reduced by
factors of more than three at high Mach number. In this pa-
per we review some of the basic effects of compressibility
on canonical turbulent flows and attempt to rationalise the
different effects of Mach number in different flows using
a flow instability concept. We then turn our attention to a
fully three-dimensional problem of shock-wave/boundary-
layer interaction in a closed duct, considering direct effects
of shock waves, due to their penetration into the outer part
of the boundary layer, as well as indirect effects due to the
high convective Mach number of the shock-induced separa-
tion zone. It is noted in particular how shock-induced turn-
ing of the detached shear layer results in strong localized
damping of turbulence kinetic energy.

INTRODUCTION
While shock-wave interactions with turbulent bound-

ary layers were known since basic experiments conducted
in the 1940s (Dolling, 2001), it became apparent in sub-
sequent work that more subtle effects of compressibility
were also present, for example in the experimental data
on mixing layers collated by Birch & Eggers (1973) that
showed a large reduction in growth rate as the Mach num-
ber increased. Indeed this was one of the motivations for
the Brown & Roshko (1974) work on mixing layers that,
besides stimulating work on organised structures in tur-
bulence, also demonstrated that the reductions in growth
rate could not be attributed solely to the effects of vari-
able density. However other flows, such as attached tur-
bulent boundary layers, did not show strong effects of com-
pressibility, with Morkovin’s hypothesis (Bradshaw, 1977)
of weak compressibility applying up to Mach 5. Some of
the apparent contradictions have been resolved in subse-
quent research, while some aspects, including turbulence
and sub-grid modelling for compressible flows, are unre-
solved. A number of reviews of compressible turbulence
and shock-wave/boundary-layer interaction (SWBLI) have
been published over the last decade, including Smits & Dus-

sauge (2006), Gatski & Bonnet (2009), Babinsky & Harvey
(2011) and Clemens & Narayanaswamy (2014).

In this contribution we will first review the main canon-
ical flow problems and then discuss flow stability arguments
that, in connection to turbulence production at the largest
eddy scales, can help to explain some of the differences seen
between different flows such as the mixing layer and wall
boundary layer. We then consider a more practical exam-
ple of SWBLI in a 3D duct flow, where multiple effects are
present but additional physics is still observed in the form
of streamline curvature effects.

CANONICAL FLOWS
Mixing layers

The most striking effect of compressibility on turbu-
lence is the reduction in growth rate of the compressible
turbulent mixing layer. Experiments by Papamoschou &
Roshko (1988) showed how a convective Mach number
and a suitable normalisation of mixing layer growth rate
with its incompressible value could collapse data over a
wide range of Mach number and density ratios. For free-
streams with equal ratio of specific heats, the convective
Mach number is given by Mc = (U1−U2)/(a1+a2), where
U is the velocity and a the sound speed with subscripts
1 and 2 denoting the fast and slow speed streams respec-
tively. Mc can be interpreted as the free-stream Mach num-
ber seen by an eddy convecting downstream at a velocity
of Uc = (a2U1 + a1U2)/(a1 + a2). The most comprehen-
sive attempt to collapse the experimental data is in Slessor
et al. (1998), who used a slightly modified version of the
convective Mach number to get a best fit. For two paral-
lel streams with equal ratio of specific heats and equal free
stream temperatures the resulting curve is shown in figure
1, in the form of a plot of the relative growth rate Φ (the
mixing layer spreading rate under compressible flow condi-
tions, divided by the spreading rate in incompressible flow
for the same velocity and density ratio) against the convec-
tive Mach number Mc. The growth rate of the turbulent
wedge is seen to be reduced by almost a factor of three
as the convective Mach number is raised to 1.0. Despite
a considerable spread in the experimental data, the convec-
tive Mach number concept appears to be well supported by
experimental data. Figure 1 also shows a curve from linear
stability theory (LST), showing the effect of Mach number
on the temporal growth rate (taking the maximum over all
streamwise and spanwise wavenumber combinations). We
shall return later to the observation that the linear theory
follows the Slessor et al. (1998) empirical fit quite closely
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Figure 1. Relative growth rate Φ as a function of convec-
tive Mach number Mc, showing results from linear stability
theory (LST) compared with the empirical fit to experimen-
tal data from Slessor et al. (1998).

(within the experimental scatter).
An explanation for the reduction in growth rate has

been sought from the Reynolds stress transport equations.
Early suspicions fell on the additional terms in these equa-
tions that are not present in incompressible flows. However,
Vreman et al. (1996) showed that the dilatation dissipation
and pressure dilatation terms remained small even as the
growth rate reduced significantly due to compressibility. It
was shown instead how the growth rate falls in proportion
to the production and that this in turn was caused by reduc-
tions in pressure strain terms in the Reynolds stress equa-
tions. Thereafter, explanations differ as to the root cause.
Vreman et al. (1996) considered a model compressible vor-
tex, showing how pressure fluctuations naturally reduced in
compressible flows, and how a model based on this idea
could predict the growth rate reduction, whereas Pantano &
Sarkar (2002) considered the effect of reduced communica-
tion due to the finite sound speed. However to the author’s
best knowledge neither the reduced communication idea nor
the reduced pressure fluctuations have been used in practi-
cal turbulence models to date.

Boundary layers
It is well known that compressible wall boundary lay-

ers are mainly affected by density effects, rather than com-
pressibility, for free stream Mach numbers M∞ ≤ 5 (Brad-
shaw, 1977). The standard way to scale density effects out
of the mean profile is with the Van Driest transformation,
given by

u+VD =
∫ u+

0

(
ρ

ρw

)1/2
du+ (1)

The transformed profiles have been observed to provide a
useful (though not exact) collapse of high speed boundary
layer profiles back onto incompressible cases, as shown for
example in Duan & Martin (2011). The transform has also
been used to extend tubulence inflow generation methods to
fully compressible flow, for example in Touber & Sandham
(2009).

Early progress on understanding the effect of com-
pressibility on boundary layer turbulence was reviewed by
Bradshaw (1977). He expressed the findings as a number of

hypotheses and analogies between energy and momentum
transport. Morkovin’s hypothesis covers an expectation that
the turbulence shear stress and streamwise normal stress
are not strongly dependent on Mach number, whereas the
strong Reynolds analogy uses a linearisation of the govern-
ing equation to connect thermodynamic and velocity fluctu-
ations. Evidence for applicability or otherwise of these re-
lations is provided by DNS studies, including Maeder et al.
(2001). In particular, Huang et al. (1995) and Duan & Mar-
tin (2011) show how the analogies can be adapted for high
Mach number and high enthalpy flows to provide reason-
able representations of the turbulence.

Other insights have helped to understand the different
effects of Mach number on different flows. In particular the
gradient Mach number Mg was exploited by Sarkar (1995)
to compare mixing layers with boundary layers, since it was
found that for equivalent flow Mach numbers the gradient
Mach number was substantially higher in mixing layers.
This study also first identified the role of compressibility
in modifying the production rate of turbulence.

The state of turbulence modelling for compressible
flows is discussed in Wilcox (2006), which despite being
ten years old still represents the state of the art. Wilcox de-
scribes a number of fixes to low-speed models to account
for both the rapid change of mixing layer growth rate with
Mach number and the relative insensitivity of the bound-
ary layer to Mach number. These fixes are purely empirical
and the lack of progress in modelling has been a disappoint-
ment. One approach was based on dilatation dissipation,
for example in Sarkar et al. (1991), which considered the
additional dissipation due to eddy shocklets. However, the
modelling did not develop on a more physically-based path-
way once the origin of the growth rate was found to reside
in pressure-strain correlation rather than explicit compress-
ibility terms (Vreman et al., 1996).

Large-eddy simulation is also problematic for com-
pressible flow due to the large number of sub-grid terms
that may need to be modelled, as discussed in Garneir et al.
(2009). Vreman (1995) recognised the problem and over-
came it to some extent by proposing dynamic models that
do not require any particular physical insight into the na-
ture of the various terms. The issue of compressibility is
probably not so serious for LES as for RANS, since most of
the strong compressibility is expected to reside in the larger
scales. Nevertheless, shocks and eddy shocklets have spec-
tral content at the smallest scales and this is not generally
taken into account in the models. An additional problem in
DNS and LES is that the dissipation introduced into numer-
ical schemes to allow the capturing of shock waves is also
likely to over-damp turbulence, unless particular attention
is paid to the schemes and to the use of limiters to restrict
the dissipation to the immediate vicinity of shocks.

Turbulent spots
Given the relative insensitivity of zero pressure gra-

dient boundary layers to the free-stream Mach number, it
is surprising that lateral growth rate of turbulent spots (re-
gions of a turbulence within an otherwise laminar boundary
layer) is strongly affected by compressibility. A collection
of experimental data by Fischer (1972) shows a reduction
in spreading angle by a factor of three at M∞ = 5, compared
with incompressible flow (where the spreading half angle
is about 10◦). In the years since the experimental data was
published, it has become possible to carry out numerical
simulations of some of the cases, with examples reported in
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Figure 2. Variation of the spreading angle of the half-
width of turbulent spots as a function of free-stream Mach
number (Redford et al., 2012). The shaded area repre-
sents the spread of the experimental data from Fischer
(1972), while the symbols show DNS results from Jocksch
& Kleiser (2008) (+), Krishnan & Sandham (2006) (open
symbols) and Redford et al. (2012) (filled symbols, red for
hot wall conditions and blue for cold-wall conditions).

Krishnan & Sandham (2006) and Jocksch & Kleiser (2008).
It is interesting to note that there are varying definitions of
spot width and numerical simulations show similar scatter
to the experiments, as shown in figure 2. Further calcula-
tions by Redford et al. (2012) show the expected reductions
in growth rate and also show how the wall thermal condition
is of lesser importance than the Mach number. Cases with
cold walls (wall temperature equal to the free stream tem-
perature spread more slowly than spots in flows where the
walls are at the adiabatic temperature, but only by 20-30%,
whereas the spreading rate at M∞ = 6 was already reduced
by a factor of four compared to incompressible flow.

Why should compressibility be so important to the
spreading of turbulent spots, but play only a minor role in
the fully developed turbulent boundary layer? To explain
this, attention has focused on the wing-tip region where
the boundary between turbulent and laminar flow provides
a strong lateral velocity gradient that can drive the spot
growth. Gad-El-Hak et al. (1981) noted that the turbulence
can spread by two mechanisms, either by mean convection
outwards from the spot centre, or by destabilisation of the
surrounding boundary layer. Once fluid has become turbu-
lent it can be thought of as being convected at typical speeds
associated with structures within the turbulent flow. Struc-
tures towards the edge of the boundary convect at near the
free stream speed, while those closest to the wall (the near
wall streaks and buffer layer structures) convect at speeds
of 40-50% of the free stream, dependent on Reynolds num-
ber. This leads to a natural streamwise spreading of the
newly-turbulent flow that, together with the lateral spread-
ing, gives the classical arrow-head structure of spots. This
structure is changed by compressibility, with examples of
turbulent spots shown in Redford et al. (2012). Additional
structures related to the second (Mack) modes of instability
are also observed underneath the spots (Krishnan & Sand-
ham, 2006). With respect to the growth mechanism that was
affected by compressibility, Redford et al. (2012) showed
how it was the destabilisation of the surrounding boundary

Figure 3. Three different types of shock-wave/boundary
later interaction problems: (a) shock impingement, (b) su-
personic ramp flow, (c) transonic flow over a bump (Lawal,
2002).

layer (Gad-El-Hak’s second mechanism) that was affected
by Mach number, with a much slower rate of generation of
new structures at the Mach 6 compared to Mach 3 in their
simulations. The relevance of an instability/destabilisation
mechanism for spot growth is something that we will follow
up later.

Shock/turbulence interaction

A simple model problem consists of isotropic turbu-
lence passing through a normal shock, for which direct nu-
merical simulations (DNS) and a linearised theory are pos-
sible. Linearised interaction analysis (LIA) is derived from
the Euler equations. The oncoming turbulence can be de-
composed into vortical, acoustic and entropy modes, which
can in principle interact with each other according to the
mechanisms given in Chu & Kovásznay (1958). To study
shock/turbulence interactions, each of the linear modes can
be interacted separately with a normal shock wave. Results
from comparisons between DNS and linear theory are re-
ported in e.g. Mahesh et al. (1997), who looked in partic-
ular at the variations in turbulence associated with an en-
tropy wave passing through a normal shock. Turbulence
kinetic energy and temperature fluctuations are amplified
across the shock, with the streamwise normal stress being
most affected. Whereas generally a good qualitative agree-
ment has been found between DNS and theory, recent work
by Larsson et al. (2013) has identified some important dif-
ferences. The post-shock anisotropy of vorticity was found
to be of small practical importance due to a rapid return to
isotropy at higher Reynolds numbers. Additionally differ-
ent flow regimes in which the shock wave became wrinkled
and broken were identified.
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Shock-wave/boundary-layer interaction
When a shock wave interacts with a boundary layer

the subsequent interaction can be weak, where the boundary
layer is thickened by the adverse pressure gradient imposed
by the shock, or strong, where there is a shock-induced flow
separation. This category of canonical flow can be further
subdivided as shown in figure 3 into: (a) an oblique shock
impinging onto a boundary layer on a flat plate, (b) an inter-
action initiated by a ramp and (c) a transonic interaction in
flow over a bump. The latter case is different, since the flow
upstream and downstream is subsonic. However all three
cases share important flow physics, including separation,
with a shock wave developing from the coalescence of com-
pression waves from the separation region, and a similar
phenomenon leading to a reattachment shock, with a closed
separation bubble forming in each case. The bump flow
forms a classical λ -shock pattern, where the two shocks
near the wall (forming the front and rear feet) meet at a
triple point. Above this region a near-normal shock marks
the end of the supersonic flow region. The oblique shock
and ramp cases have similar physics, as shown for small
disturbance cases by Pagella et al. (2004). However there
are important potential differences, with many observations
of streamwise structures attributed to Görtler instability due
to the destabilising curvature near the reattachment point.
There are also curvature effects in the oblique shock case,
as we shall see later, and it is important to note that the flow
over the top of the bubble in this case also experiences an
expansion fan and the bubble in this case is triangular in
shape, with the apex at the point where the shock impinges
and reflects as an expansion wave.

All three cases show similarities in the difficulty of the
turbulence modelling and in the occurrence of large am-
plitude low-frequency oscillations. The former problem
is well known. Reynolds-averaged Navier-Stokes (RANS)
methods give results of only qualitative accuracy, as for ex-
ample shown by Doerffer et al. (2010). One might think
that the unsteadiness can be captured in unsteady RANS
(URANS), but this method only gives steady results, as
does detached eddy simulation (DES). Better agreement
with experiment can only be obtained with such methods by
introducing additional unsteadiness, as shown by Garnier
(2009), but this requires the specification of disturbances,
the precise form of which is not known a priori. This is
an ongoing research topic, as is the embedding of higher fi-
delity methods within RANS, URANS and DES. The low-
est form of modelling that has been proven to work for
SWBLI problems is LES, and only then with wall-resolved
LES, by which we mean LES that resolves the sublayer,
with grid grid counts smaller than DNS by only a factor of
20-30 and with care taken particularly to resolve the wall-
normal direction close to what would be needed for DNS.
The first application of LES to the oblique SWBLI problem
was by Garnier et al. (2002). Such simulations can show ex-
cellent agreement with experiment, as for example shown
in figure 4 where results from Touber & Sandham (2009)
are compared with experiments carried out in Marseille by
Dupont et al. (2006) and Piponniau et al. (2009), although
we should bear in mind the sensitivity of the experimen-
tal flow to upstream conditions and sidewall effects, and of
the LES to the spanwise domain size. Nevertheless, it is
clear that LES captures the correct bubble physics. Further-
more, LES is the only feasible way to obtain sufficiently
long time series to be able to study the other interesting
feature of shock-induced separated flow, namely the low-
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Figure 4. Comparison of LES with experiment showing
(a) contours of mean streamwise velocity, comparing PIV
(shaded) with LES (contour lines), with the orange lines
(dashed for the experiment) showing the zero velocity con-
tour, and (b) velocity profiles at several streamwise loca-
tions (Touber, 2010).

frequency unsteadiness.
There are a number of competing explanations of the

occurrence of low-frequency oscillations in SWBLI prob-
lems, and it is only very recently that a resolution appears
to be possible. Figure 5 shows a weighted (pre-multiplied
with frequency) power spectrum of wall pressure fluctua-
tions under the base of the reflected shock. The figure shows
a good agreement between the experimental measurements
(Dupont et al., 2006) and LES. The LES shows two peaks,
one at Strouhal number of St = 0.03 and the other (not re-
solved in the experiment) corresponding to boundary layer
turbulence. Alternative explanations for the low-frequency
peak include upstream boundary-layer disturbances, global
modes, acoustic feedback mechanisms within the bubble
and bubble ’breathing’. We will not recap all the arguments
here; they are readily available in the literature, for example
in Ganapathisubramani et al. (2007), Robinet (2007) Piroz-
zoli & Grasso (2006) and Piponniau et al. (2009). Each
study is in some sense correct in that the physical phenom-
ena are reproducible, but there is generally a lack of testable
predictions from the various approaches. A resolution ap-
pears possible when we consider two recent developments.
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Figure 5. Weighted power spectral density of wall pres-
sure fluctuations as a function of normalised frequency,
comparing experiment (dashed line), LES (line with open
symbols and the model (filled symbols), from Touber
(2010).

Firstly Touber & Sandham (2011) showed how an analysis
based on the (wall-normal) integrated Navier-Stokes equa-
tions, using LES data to neglect terms with lower order of
magnitude, could provide a simplified model in the form of
a first order ordinary differential equation, with stochastic
forcing provided by the boundary layer skin friction fluctu-
ations (either upstream or downstream of separation). Re-
markably, this results in exactly the same spectrum as was
postulated empirically by Plotkin (1975). The prediction of
this type of model is shown with filled symbols on figure
5, with excellent agreement between the model and both
LES and experiment. The analysis only requires the flow
near the separation to be modelled, suggesting that bub-
ble feedback dynamics (recirculation or acoustic in origin)
does not need to be included. Another useful way of look-
ing at the problem is provided by the recent work of Sar-
tor (2014), who used a resolvent mode analysis to look at
the global response of a transonic bump flow problem (the
Delery bump). This linearised analysis considers forcing in
the problem formulation and the resulting singular value de-
composition provides information about the flow response
to forcing and about the forcing that gives the largest gain.
Sartor did not find any globally unstable modes and showed
how the response problem correctly picked out the dynam-
ics of shock and shear layer interactions. The optimal
forcing showed both upstream and downstream contribu-
tions, whereas in practical applications it would be mod-
ified by the disturbance environment. For example, it is
known that the low-frequency response occurs even in the
absence of upstream coherent disturbances (Touber & Sand-
ham, 2009), or indeed any disturbances at all in the laminar
case (Sansica et al., 2014). Our current best explanation is
therefore that the low-frequency unsteadiness is the linear
response of the separating flow to background noise, with
the shock acting as a low-pass filter of disturbances that can
come from upstream or downstream. Near the separation
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Figure 6. Contours of disturbance growth reduction fac-
tor Φ as a function of wave angle θ and convective Mach
number Mc.

there is a high mean streamwise pressure gradient, hence
the amplitude of the wall pressure fluctuations at this point
is high.

THE θ −Mc STABILITY MAP
There have been a number of studies that make a con-

nection between local stability analysis and turbulent free
shear layer growth rates, for example Monkewitz & Huerre
(1982). In particular the spatial growth rate of small ampli-
tude disturbances seems to be directly proportional to the
growth rate of a turbulent mixing layer. The rationale for
this, that the growth and decay of long-wavelength modes
(more than ten times the mixing layer vorticity thickness)
controls the production of turbulence at large scales, was
tested experimentally by Gaster et al. (1985), who showed
that upstream forcing of instability waves could be quantita-
tively compared to the downstream behaviour of large struc-
tures in mixing layers. This was elaborated by Morris et al.
(1990), who showed how the proportionality between linear
spatial growth rate and mixing layer growth rate could be
derived from a simplified model. Further evidence for the
continued importance of linear modes has emerged in the
study of jet noise; for example Suzuki & Colonius (2006)
measured disturbances in the potential flow just outside a
circular jet, with clear detection of the linear eigenmodes of
the jet shear layer.

For compressible flows the relation between mixing
layer growth rate and spatial stability theory was recognised
by Ragab & Wu (1989) and Sandham & Reynolds (1990).
In particular it was shown how the effect of velocity ratio,
density ratio and Mach number on mixing layer growth rate
could all be predicted by the linear theory. In this section we
present the basic shear layer instability results in the form
of a θ −Mc map, where θ is the wave angle and Mc is the
convective Mach number, and we will attempt to find def-
initions of an effective Mc (different to the gradient Mach
number Mg) for boundary layers and turbulent spots.

The basic θ −Mc plot is shown on figure 6. The verti-
cal axis is the wave angle θ , which is equal to zero for span-
wise wavefronts and 90◦ for streamwise wavefronts. The
horizontal axis is the convective Mach number Mc. The
contours on the stability map are of the growth reduction
factor Φ, which is defined as the growth rate relative to the
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largest growth rate of the same case (same velocity and den-
sity ratio) from incompressible flow. Φ is defined by taking
the maximum growth rate over all streamwise wavenum-
bers. In Sandham & Reynolds (1990) it was shown that the
spatial and temporal theories provide very similar results
for Φ, so here we use the temporal approach for simplicity
and only consider cases with equal density ratio. The plot
includes only first mode disturbances, which are oblique at
the higher Mach numbers. There are also radiating modes,
but these are only weakly unstable and can be ignored in
this context. The first stages of oblique-mode breakdown
to turbulence were presented based on DNS by Sandham &
Reynolds (1991).

A number of interesting results are clearly seen from
figure 6. At Mc = 0 the most unstable mode is 2D (a
consequence of Squires’ theorem). This is not to say that
only 2D modes are excited, however. An N-factor calcula-
tion in Sandham & Sandberg (2009) showed how structures
could emerge from background spectra including different
angles. Neither this approach, nor the DNS, gave perfectly
spanwise structures, implying that other factors may have
been active in the Brown & Roshko (1974) experiments that
showed clear spanwise organisation. As Mc increases in fig-
ure 6 it can be seen that for Mc > 0.6 oblique modes are the
most unstable waves. The peak growth rate follows a line
Mc cosθ = 0.6 (Sandham & Reynolds, 1990). The varia-
tion of Φ, taking the maximum over θ for each Mc was
shown on figure 1 as the LST result. This curve matches the
observed decrease in shear layer growth rate observed ex-
perimentally, almost as well as the empirical fit to the data.
Finally we note that for Mc cosθ > 1 (the second contour
shown on figure 6) there is no first mode growth. Thus, for
any local shear layer that is evolving within a turbulent flow,
a dead zone occurs, with no instability (up to a certain wave
angle) to drive shear-layer roll-up. This is expected to mod-
ify the turbulence dynamics at any scale where a locally-
defined convective Mach number exceeds one.

The stability plot, extends straightforwardly to other
free shear layers such as jets and wake. However we will
also attempt to show in the following paragraphs how it may
potentially also be applied to boundary layers, particularly
under the effect of adverse pressure gradients, and to turbu-
lent spots, by a suitable redefinition of Mc.

We have already remarked that compressibility effects
enter the turbulence problem by modifying the production
term, i.e. at the scale of the largest local structures, or al-
ternatively where the velocity fluctuations are largest. For
the boundary layer there are three possible regions where
compressibility effects might enter, namely the buffer layer
(which is exposed to a large velocity gradient), the log layer,
and the outer (wake) region. Although the buffer layer is in
a region of high velocity gradients, it is also typically a re-
gion of high temperature and hence high sound speed. This
is sufficient to reduce considerably the effective value of
Mc, for example a Mach 5 boundary layer with a wall tem-
perature equal to the adiabatic wall temperature, a buffer
layer ∆U+ = 6 and an edge velocity of U+

e = 25 would
have an effective Mach number of Mc = 0.05M∞, based on
Mc = ∆U/(2aw) putting this well within the region rela-
tively unaffected by compressibility according to figure 6.
Nevertheless, there can still be some effects of compress-
ibility such as the changes in the low speed streaks observed
by Coleman et al. (1995). In the log layer we can make
a simple estimation based on the idea of a mixing length
l = κy (with κ the von Karman constant). Here the effective

Mach number, for a boundary layer with U+
e = 25 is given

by Mc = 0.02M∞, for the worst case of sound speeds a1 and
a2 equal to the free stream value (ae). The outer layer is
more interesting because the form of the mean velocity pro-
file that adds onto the log law to get to the observed data
is already in the form of a mixing layer (i.e. Coles’ wake
function). We can develop an effective Mach number using
the wake parameter Π and the respective sound speeds at
the wall (aw) and in the freestream (a∞) by

Mc,bl =
2Π

κ

M∞

U+
e (1+aw/a∞)

. (2)

For the previously mentioned adiabatic wall case of M∞ = 5
we get Mc,bl = 0.16 which is low enough to be consistent
with Morkovin’s hypothesis, but higher than the other re-
gions of the boundary layer, suggesting that the outer region
is most susceptible to compressibility effects.

With adverse pressure gradient boundary layers the
wake magnitude Π grows, up to the point of separation
where we have effectively a mixing layer, and (aside from
the not insignificant effects of wall proximity on the flow
instability) we would expect that broadly the effect of com-
pressibility will follow that seen for mixing layers. Thus,
the prediction is that for adverse pressure gradient boundary
layers, effects of compressibility will be seen at lower and
lower Mach numbers. Taking the threshold at Mc = 0.3 we
see that this is reached for cold-wall conditions (aw = a∞)
at M∞ = 5.5 for zero pressure gradient flow, reducing down
to M∞ = 0.6 for a boundary layer on the point of separation
or reattachment. Thus compressibility may be a significant
effect in many transonic flow involving separation. This is
not particularly a new observation but equation (2) above
seems to provide a rationale to look for compressibility ef-
fects in boundary-layer flows with adverse pressure gradi-
ents at moderate M∞.

Finally in this section we consider the growth of turbu-
lent spots and the surprising result that even in zero pressure
gradient boundary layers the lateral growth rate is strongly
compressible, showing a reduction by a factor of four in a
boundary-layer at M∞ = 6. The reasons for this strong re-
duction have not yet been fully explored. Redford et al.
(2012) showed how compressibility mainly acted on the
mechanism of destabilisation of the surrounding laminar
boundary layer and, perhaps most relevant to the mecha-
nisms considered here, observed roll-up of lateral jets ema-
nating from the wing tips of the spot. The local instability
problem is not amenable to analysis since the basic flow is
3D. The jets themselves are not fast enough to be subject to
high compressibility effects. However a simple estimate of
Mc for these jets relative to the freestream can be derived, by
considering the jet location in the laminar boundary layer,
as

Mc,spot = M∞

1−U j/U∞

1+a j/a∞

(3)

where U j is the laminar boundary layer streamwise velocity
(and a j the sound speed) at the jet location and from Red-
ford et al. (2012) U j ≈ 0.45U∞. For a spot at M∞ = 5 we ob-
tain Mc,spot≈ 1.0, with a predicted value of Φ= 0.35, which
compares reasonably well with the observed spot growth
rate curve.

In this section we have attempted to extend the ba-
sic shear layer instability arguments from mixing layers to
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Figure 7. Schematic of SWBLI in a 3D duct with width
W and height H, from Wang et al. (2015).

boundary layers with pressure gradients and to turbulent
spots. These arguments are testable with more experiment
and simulations of compressible boundary layers, particu-
larly under conditions of adverse pressure gradient, and tur-
bulent spots, where more understanding is needed of the
physical mechanisms of spot growth.

THREE-DIMENSIONAL SWBLI
In this final section we consider a fully 3D flow that in

principle contains many of the phenomena reported in the
previous sections. The test case is taken from Wang et al.
(2015), which included both sidewalls in an M∞ = 2.7 inter-
action of an oblique shock with a flat plate boundary layer.
The M∞ = 2.7 upstream boundary layer is not expected to
experience strong compressibility effects until it enters the
region of interaction with an oblique shock that is strong
enough to separate the flow. Structures in the outer part
of the boundary layer will experience shock/turbulence in-
teraction and the separated shear flow will be affected by
compressibility. In addition there are sidewall and corner
interactions as well as a strong curvature of the shear layer
due to the shock impingement.

Details of the simulations are given in Wang et al.
(2015), with the basic set up reproduced in figure 7. Af-
ter running the simulations all distances have been rescaled
to units of mm in the corresponding experiment, whereas
other quantities are shown in dimensionless form. The case
is set up as a wall-resolved LES and a grid refinement study
was run to show the sensitivity of the solution to the grid
in each direction separately. The simulations shown here
were run on a grid of 480×416×758 points in the stream-
wise, normal and spanwise directions respectively. The in-
flow turbulent boundary is set using the same digital filter
approach used by Touber (2010), with the inflow thickness
adjusted to give a target Reynolds number of Reθ = 4300
based on the boundary layer at the shock impingement loca-
tion, but in a case with no shock. The interaction is located
sufficiently far downstream of the inflow to give the bound-
ary layer enough time to relax to an equilibrium condition,
measured by an acceptable comparison of the Van Driest
scaled profile with incompressible flow data at the same
Reynolds number. The cases were run for both sidewalls,
since a test simulation with a symmetry plane in the span-
wise direction gave unphysical results near that plane due
to the constraints imposed of the turbulence by this bound-
ary condition. The upper boundary condition is designed
to mimic a shock generator in an experiment. Upstream of
the shock generator a characteristic boundary condition was
applied. On the shock generator a no-slip condition was set
and then downstream the boundary condition was changed
back to characteristic. Care was taken to ensure that the ex-
pansion wave emanating from the rear of the shock genera-
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Figure 8. Mean pressure contours on the lower wall show-
ing the pressure rise through the bubble and the end-wall ef-
fects. The white contours show the regions of reverse flow.

tor impacted on the lower test plate far enough downstream
of the interaction not to affect the pressure and skin friction
distributions within the interaction.

The shock generator (with angle 9◦) generates an
oblique shock. Depending on the aspect ratio W/H, where
W is the width between the two sidewalls and H is the
height of the leading edge of the shock generator above the
plate, there are different types of interaction. In particu-
lar for a case with W/H = 4 it was shown that there is a
region of genuinely span-independent mean flow near the
centreline, with good agreement with a simulation run with
spanwise periodic boundary conditions. This is because the
sidewall-induced modifications to the impinging shock have
not reached the centreline within the interaction region. In
contrast, a case with W/H = 1 was shown to be completely
3D in the mean, as in Bermejo-Moreno et al. (2014). Here
we consider the intermediate case W/H = 2, for which con-
tours of surface pressure are shown on figure 8. The white
contour line shows the reverse flow region, with the sepa-
ration line seen to be more 2D than the reattachment line.
Clear corner effects are observed, with the wall pressure ris-
ing earlier near the corners and with a small corner separa-
tion.

The nature of the interaction can be explained by trac-
ing the effects back to the shock generator. The generated
shock is sufficient to thicken, but not separate, the sidewall
boundary layer. The pressure rise is thus smeared out and
the start of the pressure rise precedes the shock location.
Another interesting feature is that the shock does not pene-
trate the sidewall boundary layer down to the sonic line, but
only down to a swept sonic condition. Wang et al. (2015)
defined a penetration Mach number by Mp = M∞ cosβ ,
where β is the oblique shock angle, and showed that this
matched the actual penetration Mach number, observed as
2.2 in the simulations. Thus only the very outermost part
of the sidewall turbulent boundary layers was exposed to
a shock wave. The leading edge of the sidewall interac-
tion reaches the lower wall first (ahead of the main shock
induced separation). As shown by Wang et al. (2015), it re-
flects in the corner, but with only a small corner separation.
The effect of the interaction with the lower surface was clar-
ified by running a separate simulation with a slip-wall lower
boundary condition. This showed that significant spanwise
flow is developed irrespective of the lower boundary condi-
tion.
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Figure 9. Mean flow and turbulent stresses in the interac-
tion region: (a) velocity, (b) pressure (c) u′2, (d) v′2 (e) w′2.
The upper white contour in each frame shows the sonic line
and the lower contour shows u = 0. The dashed line is a
sample streamline.

In the present contribution we consider some more as-
pects of the WH2 case from Wang et al. (2015). Figure
9 shows contours on the centreline of the mean streamwise
velocity (a), mean pressure (b) and the three normal compo-
nents of the Reynolds stress (c-e). Also shown on each fig-
ure are three white lines corresponding from top to bottom
to the sonic line (local M = 1, solid white line), a streamline
located near the centre of the detached shear layer (dashed
white line) and a line with zero mean streamwise velocity
(solid white line), with reverse flow below this line. The
shock pattern is best observed from figure 9(b) where the
incoming shock crosses the compression waves caused by
the boundary layer thickening, which starts upstream of the
interaction. These reflected waves coalesce into a reflected
shock. It can be seen how the incoming shock penetrates ap-
proximately to the sonic line and how the incoming shock is
reflected as an expansion wave, with the shear-layer stream-
line then deflected downwards. This pattern is well known
from previous studies and is representative of previous LES
and experiments.

Figure 9(c-e) should in principle show the effect of
turbulence in the outer part of the boundary layer passing
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Figure 10. Velocity profiles at separation (solid line) and
at two locations within the bubble.

through a shock wave that might be compared to previ-
ous work on normal-shock/turbulence interaction. How-
ever, on closer inspection that problem seems of little rel-
evance here, since the changes in the turbulence are dom-
inated by the shear layer. In figure 9(c) it is just possible
to see a small increase in the magnitude of u′2 in the re-
gion above the sonic line. Instead, the streamwise Reynolds
stress is dominated by the growth of turbulence in the de-
tached shear layer, reaching a maximum at x = 139. Inter-
estingly the peak shear stress doesn’t exactly align with the
streamline in these pictures.

Even more remarkable in figure 9(c) is the strong
reduction in the streamwise components of the normal
Reynolds stresses after the apex of the bubble. The stress
decreases by a factor of approximately two between x= 149
and x= 155. Given that the local vorticity thickness is about
6, this reduction occurs within one vorticity thickness (and
substantially less than one boundary layer 99% thickness).
The explanation lies with what might be termed an indirect
compressibility effect, based on the shear layer curvature
near the apex of the bubble. For the streamline shown in
figure 9 the minimum radius of curvature was determined
to be 6.9. The direction of the curvature (opposite to the
Görtler instability) is stabilizing and such a level of cur-
vature, with the flow deflected by 15◦ within one vorticity
thickness, is extreme. The curvature arises due to the re-
flection of the shock wave from the top of the bubble as an
expansion, with subsequent flow turning only smeared over
one boundary layer thickness. For a turbulence model to
cope well with such a shock-induced separation, not only
would it need to treat compressibility correctly, but also the
stabilising effects of extremely strong curvature. In contrast
to the behaviour of u′2 it can be seen that v′2 and w′2 are rel-
atively unaffected by the sudden change of flow direction.

Figure 10 shows the velocity profile at separation and
another two profiles through the separated flow, one up-
stream and one downstream of the bubble apex. For these
two profiles the effective (convective) Mach number was es-
timated by taking the velocity difference between the exter-
nal flow (under the shock waves) and the maximum reverse
flow and the sound speed at the same two locations. This
gave Mc = 1.0 for the upstream profile and Mc = 0.9 for the
downstream profile (it may be noted that the freestream is
slower at the second location due to the shock waves lead-
ing to the lower Mc). Based on the arguments of the pre-
vious section, these levels of Mc suggest significant com-
pressibility effects on the turbulence. However the profiles
are not well approximated by the hyperbolic tangents used
in the previous section, and of course a wall is present here,
so additional stability calculations are required to check the
relevance of the previous results.

An impression of the instantaneous flow can be ob-
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tained from figure 11, which in part (a) shows an x−y plane
at the duct centreline and in part (b) shows a cut in a y− z
plane at x = 73.2. In figure 11(b) the sidewall boundary
layer is visible and it can be seen that there is a significant
penetration of high momentum fluid close to the wall, as
also seen in Bermejo-Moreno et al. (2014), which is partly
responsible for the mean flow to be attached in a region
close to the sidewalls (cf. figure 8) and for the corner sep-
aration to be small. The horizontal contour lines present in
the freestream are cuts through the impinging and reflected
shock waves. In figure 11(a) it can be seen that the de-
tached shear layer develops a wavy motion with a wave-
length of perhaps 8-10 mm, while is figure 11(b) it can be
seen that there are a series of undulations in the outer part
of the boundary layer with a wavelength of approximately 6
mm. The resulting wave angles are around 60◦ which is not
out of line with the θ −Mc diagram shown on figure 6(a),
given that the local Mc is about one. More comparisons with
stability theory are needed to confirm the potential role of
inflectional instability in the generation of these structures.

CONCLUSIONS
The two main contributions of this paper are, firstly, a

proposal to apply the stability map from the mixing layer to
other flows in order to better understand the effect of Mach
number. The stability map for the mixing layer shows how
shear layer instability growth rates reduce with convective
Mach number and how the variation of growth rate with
wave angle also changes, leading to oblique modes being
most unstable and also to a cut-off of modes with super-
sonic Mach number relative to the wave front. By consid-
ering compressibility effects to enter mainly at large scale,
this shows how large scale structures and hence turbulence
production can be modified by compressibility. Effective
convective Mach numbers have been defined for turbulent
spots and for boundary layers under pressure gradients to
show how significant compressibility effects may be present
in equilibrium boundary layers under adverse pressure gra-
dient conditions.

Secondly, we have considered the development of the
mean flow and Reynolds stresses in a 3D SWBLI problem

with side wall effects included in the simulation. The high
convective Mach numbers within the bubble suggest strong
compressibility effects on the turbulence. The shock im-
pinges near the apex of the bubble and is reflected as an
expansion wave. The associated turning of the flow was
shown to have a strong stabilising effect, leading to a reduc-
tion in turbulence intensity by over a factor of two. This
is an example of an indirect compressibility effect, where
the turbulence is governed by streamline curvature, which
exists only due to the shock impingement.
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