
HYDRODYNAMIC STABILITY ANALYSIS OF SHEARED
CONVECTIVE BOUNDARY LAYER FLOWS IN STRATIFIED

ENVIRONMENTS

Y. Xiao, W. Lin, Y. He
College of Sccience, Technology and Engineering

James Cook University
Townsville, QLD 4811, Austriala
email: yuan.xiao@my.jcu.edu.au
email: wenxian.lin@jcu.edu.au
email: yinghe.he@jcu.edu.au

S. W. Armfield, M. P. Kirkpatrick
School of Aerospace, Mechanical and Mechatronic Engineering

The University of Sydney
NSW 2006, Australia

email: steven.armfield@sydney.edu.au
email: michael.kirkpatrick@sydney.edu.au

ABSTRACT
Hydrodynamic stability analysis is carried out on

sheared convective boundary layer (SCBL) flow, in which
both sheared stratified flow and thermally convective flow
coexist. The linear unstable stratification for the thermal
convective flow region is included in the Taylor-Goldstein
equations in terms of an unstable factor Jb in parallel
with a stable stratification factor J. New unstable regions
corresponding to the thermally convective instability are
found above the pure sheared stratified flow regions in the
wavenumber α̃ versus stratification factor J plane. As
the stratification ratio Jb/J increases, the unstable regions
of thermal convection gradually approach and dominate
the shear stratified unstable regions. The transition from
shear stratified unstable mode to thermal convection unsta-
ble mode is also observed in the temporal growth rate σ̃ ver-
sus J plane and in the σ̃ versus α̃ plane. The eigenfunctions
of buoyancy, vertical velocity and buoyancy flux perturba-
tions for sheared stratified dominant mode, the transitional
mode and the thermal convection dominant mode in SCBL
flow configuration are also discussed.

INTRODUCTION
As a representative geographical flow, sheared strati-

fied (SS) flow in which sheared flow motions occur in a
stratified environment has received substantial studies in the
past decades. However, in the geographical settings such
as the planetary or oceanic boundary layers and engineer-
ing settings involving heat transfer from radiation or chem-
ical reaction, the comparable thermally convective flows in-
evitably coexist with sheared stratified flow, together form-
ing a complex flow configuration, namely the sheared con-
vective boundary layer (SCBL). SCBL flows have signifi-
cant importantce for environmental issues, such as the mix-

ing process of pollutants in atmospheric boundary layers,
the heat and mass transfer in the upper ocean, and the mix-
ing in large scale water bodies such as reservoirs, lakes and
estuaries. The SCBL flows in fire-induced smoke trans-
portation will potentially increase the fire hazards by chang-
ing flow patterns.

As pure thermally convective flows and pure sheared
stratified flows have independent unstable modes, i.e. , the
Rayleigh-Benard instability and shear stratified instability
(e.g. , the Kelvin-Helmholtz instability and Holmboe insta-
bility), the combination of the two basic flow configurations
are expected to produce more interactive and complicated
unstable modes and corresponding flow patterns. For in-
stance, Raasch & Franke (2011) used high resolution nu-
merical simulation to find the transitional behaviour from
a spoke-shape flow pattern in pure thermal convection to a
band-like flow pattern in sheared thermal convection. Yang
et al. (2010) observed experimentally a unique flow pat-
tern near the interface in fire induced SCBL. Most recently,
Stewart et al. (2014) investigated the SCBL flows with two-
dimensional direct numerical simulation and found that the
Kelvin-Helmholtz instability and the Rayleigh-Benard in-
stability coexist in some stratification conditions, where the
presence of the penetrative convection modifies the original
Kelvin-Helmholtz eddy structures. Their results also sug-
gest that new unstable modes might occur in the SCBL flow
settings, which motivates the current hydrodynamic stabil-
ity analysis to examine the stability features of the SCBL
flow.

This paper will study the hydrodynamics of SCBL flow
by introducing an unstable stratification factor Jb into the
Taylor-Goldstein equation that describes the hydrodynam-
ics of shear stratified flow. This idea comes from the hy-
drodynamic study of two-layer thermal penetrative convec-
tive flows where a thermally convective region is capped
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by a stable stratified layer. The difference between the cur-
rent SCBL flow and such two-layer penetrative convection
is whether horizontal shear flow is present. By solving mod-
ified Taylor-Goldstein equations for SCBL flows, the insta-
bility features of the SCBL, including temporal growth rate
and spatial perturbation structures, will be investigated, af-
ter a brief introduction of the numerical methodology.

PERTURBATION EQUATIONS
Based on the Taylor-Goldstein equations for sheared

stratified flow and by applying the Squire transformations
as detailed in Drazin & Reid (2004), the following pertur-
bation equations, written in matrix form, have been derived
by the current study,

σ̃
[

∇2
s

I

][
ŵ
b̃

]
=


−iα̃(U∇2

s −Uzz)
α̃2

Fr2

Ñ2 −iα̃U




[
ŵ
b̃

]
(1)

where the subscript ‘zz’ denotes the second order differen-
tiation with respect to z, ∇2

s is the Squire Laplacian oper-
ator defined as ∇2

s = D2 − α̃2, D = ∂/∂ z is the differen-
tial operator for the perturbation properties, α̃ is the Squire
wavenumber, I is the identity matrix, σ̃ is the Squire tem-
poral growth rate of the perturbations properties, ŵ and b̃
(b̃ = γθ̃ ) are the vertical component of the velocity pertur-
bation and the Squire buoyancy, θ̃ is the Squire temperature,
γ is the thermal expansion coefficient, and Ñ2 (Ñ2 = γθ̃z)
is the local Squire buoyancy Brunt-Väisälä frequency. For
sheared stratified flows, the sheared layer thickness, the ve-
locity and temperature changes across the sheared/stratified
layer are usually selected as the characteristic length scale
L, velocity scale ∆u∗,0 and temperature scale ∆θ∗,0, respec-
tively. Fr = ∆u∗,0/

√
gL is the Froude number where g is the

gravitational acceleration.
Hazel (1972) suggested that when the basic veloc-

ity and background stratification in the sheared/stratified
layer are in the form of ∆u∗,0 f (z∗) and ∆θ∗,0 f (z∗), where
f (z∗) is a hyperbolic function, and if (∂u/∂ z)|z=0 = 1 and
(∂θ/∂ z)|z=0 = 1, where z = 0 is the central line of the
sheared/stratified layer, then the local Richardson number
Rig(z) is

Rig(z) =
N2

∗ (z∗)
(∂u∗/∂ z∗)2 = J

(∂θ/∂ z)
(∂ u/∂ z)2 , (2)

in which J = gγ∆θ∗,0L/∆u2
∗,0 = (gγ∆θ∗,0/L)(L/∆u∗,0)

2.
Here the bulk temperature gradient ∆θ∗,0/L within the
sheared/stratified layer is extracted. In practical stability
analysis, J plays as an effective substitiute for Rig.

The SCBL flow system in this study is shown in fig-
ure 1, where the convective flow region with unstably linear
stratification and the length scale Lb occurs at the bottom
of the sheared stratified flow region with smooth tangential
stratification and the length scale L. As the temperature at
the bottom boundary θb,∗ is larger than the temperature θ1,∗
the flows are unstable at z∗ < Lb. However, when z∗ > Lb,
the flows are stably stratified as ∆θ0,∗ = θ2,∗ −θ1,∗ > 0. In
the convective flow region the bulk temperature gradient is
Gb = −∆θb,∗/Lb, where the negative sign indicates that the
temperature decreases with increasing height. Correspond-
ingly, the bulk temperature gradient for the stably stratified

Figure 1. The SCBL flow configuration under considera-
tion and the background velocity and stratification profiles.

layer is Gs = ∆θ0,∗/L, where the positive sign indicates that
the temperature increases with increasing height.

In penetrative convection problems where a thermal
convection region is capped by a stably stratified layer,
Whitehead & Chen (1972) and Sun (1976) introduced a sta-
bility factor S by replacing the bulk temperature gradient in
the Rayleigh number with the bulk temperature gradient in
the top stably stratified layer. Inspired by this method, in the
current SCBL flow, we replace the bulk temperature gradi-
ent Gs in J with Gb in the convective flow region z < Lb and
define the unstable stratification factor Jb,∗ for SCBL flow
as

Jb = −gγ∆θb,∗
Lb

(
L

∆u∗,0
)2 = gγGb(

L
∆u∗,0

)2 =
Gb

Gs
J, (3)

so that when z > Lb, N2
∗ = J(∂θ/∂ z) and when z < Lb

N2
∗ = Jb(∂θ/∂ z) in (2). It is noted that Jb and J have the

opposite signs, indicating unstable and stable background
stratification, respectively. Therefore, while solving (1), N2

∗
will become a piecewise function depending on if z > Lb or
z < Lb.

METHODOLOGY
The temporal mode of (1), where α is a real number

and c is a complex number, is solved in this study. It should
be noted that the real part of the temporal growth rate, σ̃ =
iα̃c, of the perturbation is only determined by the imaginary
part of the complex wave speed c, for the wavenumber α̃ is
fixed as a real number.

Matrix methods are used to solve the eigenvalue prob-
lems formed by discretising the perturbation equations (1)
with uniform grid and using the second-order central dif-
ference scheme. The QZ algorithm developed by Moler &
Stewart (1973), which is integrated in the LAPACK rou-
tine CGGEV, is used as the complex eigenvalue solver. The
robustness of the QZ algorithm in hydrodynamic stability
analysis has been demonstrated in some recent studies, such
as Smyth et al. (2011), Liu et al. (2012), and Thorpe et al.
(2013).

The boundary conditions ŵ = b̃ = 0 are applied at both
the top and the bottom boundaries. The dimensionless verti-
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Figure 2. Contour plots of the real part of temporal growth
rate σ̃ in the J versus Squire wavenumber α̃ plane with (a)
Jb = 0, (b)Jb = (1/6)J and (c) Jb = (1/3)J. The magnitudes
of σ̃ are denoted by curves in different colors.

cal coordinate z varies between -5 and 5, where z is made di-
mensionless by δs, giving the computational domain a size
ten times that of δs, where the characteristic length δs is se-
lected as one half of the sheared layer thickness. The length
scale for the unstable stratified layer is Lb = 3δs, which al-
lows the unstable stratified layer to be adjacent to the central
shear stratified layer. Based on (3), when ∆θ∗,0 = ∆θ∗,b,
Jb = Gb = (1/3)J. Thus, this study will change Jb in the
way that Jb/J will be the factor of 1/3.

RESULTS
Growth Rate σ̃

Figure 2 shows the contours of the real part of the tem-
poral growth rate σ̃ in the J − α̃ plane for different unstable
stratifications in terms of Jb. In figure 2(a) where Jb = 0
which represents that no convective flux exists, the unstable
hemi-ellipse regions over σ̃ = 0 ∼ 1, in which the imag-
inary part of σ̃ (Im[σ̃ ]) is found to be zero, correspond to
the stationary Kelvin-Helmholtz instability mode in SS flow
as marked by ‘SS’. The shapes of the KH mode regions are
similar to the numerical results from Hazel (1972), where
the critical stratification factor Jcr occurs at a corresponding
critical wavenumber α̃cr = 0.5. As Jb ̸= 0 when a convec-
tive flux is introduced, the other large unstable region where
Im[σ̃ ] ̸= 0 appears, as marked by ‘RB’ in figure 2(b) and fig-
ure 2(c). In figure 2(b), the ‘RB’ region interacts with the
‘SS’ region at α̃ ≈ 0.8. In figure 2(c) when Jb is one thrid
of J, the intersection points move to the small wavenum-
ber range α̃ ≈ 0.25 and the two contour curves of α̃ = 0.2
merge together at α̃ = 0.45 ∼ 0.8. Inside this merging re-
gion, part of the σ̃ = 0.01 contour, which was in the ‘SS’
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Figure 3. Calculated real part of the temporal growth rate
σ̃ plotted against J at α̃ = 0.5. The results in the SS and RB
unstable regiosn are denoted by the dashed and solid curves,
respectively.

region, is overwhelmed by the σ̃ = 0.02 contour of the ‘RB’
region.

To further study the interactions between the two in-
stability regions, figure 3 shows Re[σ̃ ] plotted against J at
the critical wavenumber α̃cr = 0.5 for a series of Jb/J ra-
tios. This figure can be considered as a vertical slice plot
of figure 2 at α̃ = 0.5. The Im[σ̃ ]= 0 solutions for the ‘SS’
mode and the Im[σ̃ ] ̸= 0 solutions for the ‘RB’ mode are de-
noted by dashed and solid curves, respectively. It is found
that as different Jb/J are applied, the ‘SS’ curve retains its
original shape at Jb = 0 although different ‘RB’ curves are
obtained. Therefore, the ‘SS’ mode is independent of the
‘RB’ mode. As the ‘SS’ mode branch decreases quickly
with increasing J and the ‘RB’ mode branch increases grad-
ually with increasing J, the two branches intersect near the
critical stratification factor J = 0.25 for SS flow. Near the
intersection point, as Re[σ̃ ] in the ‘RB’ mode is compa-
rable to that in the ‘SS’ mode, a narrow transition region
where both ‘SS’ and ‘RB’ have equal influence is created.
As Jb/J increases, the ‘RB’ mode curves gradually rise up-
wards and cap the ‘SS’ mode curves, thereby moving the
intersection point upwards as well. As a result, some unsta-
ble regions which were in the ‘SS’ mode are replaced by the
‘RB’ mode, e.g. , J = 0.20 ∼ 0.25 belong to the ‘SS’ region
for Jb < (10/3)J but belong to the ‘RB’ for Jb > (10/3)J.

Figure 4 shows the dispersion relations between Re[σ̃ ]
and wavenumber α̃ at J = 0.2. It can be considered as
a horizontal slice plot of figure 2 at J = 0.2. Similar to
the J ∼ σ̃ plot in figure 3, the dispersion curves for the
‘SS’ and the ‘RB’ modes are represented by dashed and
solid curves, respectively. Different from figure 3, two in-
tersection points between the ‘SS’ mode dispersion curve
and each ‘RB’ mode dispersion curve are found at small
wavenumber range and large wavenumber range respec-
tively, forming two transitional regions in the α̃ ∼ σ̃ plane.
As Jb increases, the ‘RB’ dispersion curves gradually rise
based on their common origin point and move the two in-
tersection points to larger Re[σ̃ ]. Consequently, more and
more the ‘SS’ mode dispersion curve is dominated by the
‘RB’ mode dispersion curve, e.g. when Jb = (8/3)J most
parts of the ‘SS’ dispersion curve are covered by the ‘RB’
curves.

To quantify how the ‘RB’ mode gradually overwhelms
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Figure 4. Calculated real part of the temporal growth rate
σ̃ plotted against α̃ at J = 0.2. The results in the SS and RB
unstable regiosn are denoted by the dashed and solid curves,
respectively.
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Figure 5. Calculated real part of the temporal growth rate
σ̃ plotted against the stratification ratio Jb/J at J = 0.2 and
α̃ = 0.5. The results in the SS and RB unstable regiosn are
denoted by the dashed and solid curves, respectively. The
parabolic correlation for the RB mode plot is denoted by the
red solid curve.

the ‘SS’ mode as Jb increases, figure 5 shows Re[σ̃ ] plotted
against the stratification ratio Jb/J for both the ‘SS’ and
the ‘RB’ modes at α̃ = 0.5 and J = 0.2. As both J and
α̃ are fixed, Re[σ̃ ] for the ‘SS’ mode is constant at 0.045.
On the other hand, Re[σ̃ ] for the ‘RB’ mode increases with
increasing Jb/J in a parabolic fashion, with the following
correlation,

Re[σ̃ ]RB = −0.00124(
Jb

J
)2 +0.01625(

Jb

J
)+0.00837, (4)

where the subscript ‘RB’ indicates that the growth rate be-
longs to the ‘RB’ mode. It is noted that the ‘RB’ mode curve
and the ‘SS’ mode curve intersect at Jb/J = 3, which indi-
cates a critical transition stratification condition from the
‘SS’ mode to the ‘RB’ mode.
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Figure 6. Calculated eigenfunctions of the buoyancy b′ at
α̃ = 0.5 with (a) J=0.1, (b) J=0.2 for the RB branch, (c)
J=0.2 for the SS branch, and (d) J=1.0. The solid and
dashed curves represent the amplitude and the phase, re-
spectively.

Eigenfunctions
Based on figures 3 and 5, the eigenfunctions for buoy-

ancy perturbation b′, vertical velocity perturbation w′ in (1)
and their product, and buoyancy flux perturbation B′ = θ ′w′

are studied at the critical wavenumber α̃ = 0.5 and stratifi-
cation ratio Jb/J = 3, which is the intersection point found
in figure 5. Three typical J values are selected at J = 0.1
where the ‘SS’ mode dominates, at J = 0.2 where the tran-
sition from the ‘SS’ mode to the ‘RB’ mode occurs, and
at J = 1.0 where the ‘RB’ mode dominates. For J = 0.2,
the Re[σ̃ ] for the ‘SS’ and ‘RB’ modes are very close to
each other, therefore the eigenfunctions for both modes are
shown.

Figure 6 shows the calculated eigenfunctions for b′ at
α̃cr = 0.5 and Jb/J = 3 but with three typical J values as
discussed above. The solid and the dashed curves represent
the real and the imaginary parts of b′, which correspond to
the amplitude and the phase of b′, respectively. At J = 0.1
where the ‘SS’ mode dominates, b′ concentrated on the ini-
tial central shear/stratified layer, despite slight deviations
of phase (dashed curve) due to weakly convective flow in-
duced by the bottom unstable stratified layer. As J increases
to 0.2, for the ‘RB’ mode as shown in figure 6(b), b′ varies
drastically near z = −2, which is the vertical height of the
interface between the initial stable and unstable stratified
layer. For the ‘SS’ mode as shown figure 6(c), the variation
of b′ remains at the central shear layer but its amplitude
becomes positive compared to the negative one as shown in
figure 6(a). As J increases to 1.0 where the ‘RB’ mode dom-
inates, the absolute magnitude of the phase change (dashed
curve) evolves to be larger than the amplitude change (solid
curve) of b′ at z = −2. Meanwhile, the amplitude variation
along z in figure 6(d) keeps a similar profile to that shown
in figure 6(b), and also shows a similar b′ profile to that Sun
(1976) where only penetrative convection occurs.

Figure 7 shows the calculated eigenfunctions for w′ at
α̃cr = 0.5 and Jb/J = 3 but with three typical J correspond-
ing to figure 6. At J = 0.1, the central line of amplitude of w′

is located slightly above the center of the initial shear layer
(z = 0), as a result of weak convection flow due to a small
Jb. At J = 0.2, the strong variation section of w′ starts from
the bottom of the domain for both the ‘SS’ and ‘RB’ modes.
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Figure 7. Calculated eigenfunctions of the vertical veloc-
ity perturbation b′ at α̃ = 0.5 with (a) J=0.1, (b) J=0.2 for
the RB branch, (c) J=0.2 for the SS branch, and (d) J=1.0.
The solid and dashed curves represent the amplitude and the
phase, respectively.

For the ‘RB’ mode, as shown in figure 6(b), the profile of the
amplitude of w′ changes remarkably at z = −5 ∼ −1, indi-
cating that most of w′ originate from the bottom convective
flow rather than from the initial shear layer which extends
from z = −1 ∼ 1. For the ‘SS’ mode as shown in figure 6(c),
although the amplitude of w′ starts to vary from the bottom
of the domain, the maximum w′ still occurs within the ini-
tial shear layer where z = −1 ∼ 1. At J = 1.0 where the
‘RB’ completely dominates, w′ shows strong propagative
features as the magnitude of phase is larger than the magni-
tude of amplitude.

Figure 8 shows the calculated eigenfunctions for the
buoyancy flux perturbation B′ = b′w′ at α̃cr = 0.5 and
Jb/J = 3 but with three typical J corresponding to figures 6
and 7. At J = 0.1, the buoyancy flux perturbation is formed
on the initial shear layer at the center of the domain. As J
increases to 0.2, significant differences are found between
the ‘SS’ and ‘RB’ modes. For the ‘RB’ mode, as shown in
figure 8(b), strong buoyancy flux perturbation occurs near
the interface at z = −2, with intense and positive magnitude
of amplitude compared to figure 8(a). For the ‘SS’ mode
as shown in figure 8(c), although the variations of B′ oc-
cur mainly in the initial shear layer, such variations appear
very weak as the magnitude of the amplitude and phase sig-
nificantly decrease compared to figure 8(a) and 8(b). At
J = 1.0, the buoyancy flux perturbations are almost negli-
gible. The transitional behaviors of B′ from the ‘SS’ mode
to the ‘RB’ mode suggests that as unstable stratification in-
creases, the buoyancy flux generated from the bottom ther-
mal boundary will gradually smooth out the buoyancy flux
perturbations generated by the central shear stratified layer
and eventially dominates in the entire domain.

CONCLUSIONS
The influences of the bottom thermal convection re-

gion, in terms of an unstable stratification factor Jb, are
added to the Taylor-Goldstein equations to describe the sta-
bility features of the sheared convective boundary layer
(SCBL) flow. As Jb is introduced into the Taylor-Goldstein
equation system, new unstable regions indicating thermal
instability are found above the critical stratification factor
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Figure 8. Calculated eigenfunctions of the buoyancy flux
b′w′ at α̃ = 0.5 with (a) J=0.1, (b) J=0.2 for the RB branch,
(c) J=0.2 for the SS branch, and (d) J=1.0. The solid and
dashed curves represent the amplitude and the phase, re-
spectively.

J = 0.25, for the shear stratified flow, in the J − α̃ plane,
in addition to the semicircle instability region of the clas-
sic sheared stratified flow at J < 0.25. As the stratification
ratio Jb/J further increases, the thermal unstable region ex-
pands and gradually merges with the shear stratified unsta-
ble regions. In the J ∼ σ̃ and α̃ ∼ σ̃ planes, increasing Jb
expands the thermal unstable regions and accordingly leads
to domination of the thermal unstable mode over the shear
stratified unstable mode. It is further found that the tem-
poral growth rate of the thermal unstable mode increases
in a parabolic fashion with the stratification ratio Jb/J and
gradually approaches, intersects and at last overwhelms the
temporal growth rate of the shear stratified mode, leading
to a transition from shear stratified dominant SCBL mode
to thermal convection dominant SCBL mode. The critical
transition condition for SCBL flow is found at Jb/J = 3 and
α̃ = 0.5. The analysis of the eigenfunctions of the buoyancy
perturbation b′, vertical velocity perturbation w′ and buoy-
ancy flux perturbation B′ = b′w′ shows distinctively dif-
ferent spatial perturbation structures for the shear stratified
dominant mode, transitional mode and the thermal domi-
nant mode.
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