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ABSTRACT 

The three-dimensional compressible Navier-Stokes 
equations are numerically solved to study the transitional 
structure and the resultant acoustic emission in a 
supersonic round jet at high convective Mach numbers. A 
5th-order compact upwind algorithm developed by Deng 
et al. (1996) is used for spatial derivatives and a 4th-order 
Runge-Kutta scheme for time advancement. The Navier-
Stokes characteristic boundary conditions are used in the 
streamwise and radial directions and periodic boundary 
conditions in the azimuthal direction. Numerical results 
for the convective Mach number Mc = 1.00 (Mj=2.0) and 
Rer0=1000 based on the jet nozzle radius r0 are presented. 
Four different cases were investigated. The first case is the 
jet forced randomly (random case). The other cases are the 
jet flow forced by the linear unstable modes. These cases 
are the jet flow forced by a pair of first helical 
modes(m=±1 case), second helical modes(m=±2 case) and 
third helical modes(m=±3 case), respectively. Growth of a 
pair of third helical modes (m=±3) causes the early decay 
of jet centerline velocity. Furthermore, radiated pressure 
fluctuations generated by the growth of a pair of third 
helical modes (m=±3) which have subsonic phase velocity 
are suppressed compared with turbulent jet. 
 
 
INTRODUCTION 

Compressible jets, which can be found in many 
applications such as rocket, scramjet, ramjet and turbojet 
engines, have been of fundamental importance in the 
study of compressible free shear flows. With new noise 
regulations, reducing of acoustic noise is the one of key 
technological challenges facing proposed supersonic 
commercial aircraft. The numerical investigation of 
supersonic jets is expected to guide such technological 
progress on aircraft where the jet exhaust velocity is 
supersonic. On the other hand, methods have long been 
sought to find an efficient means for reduction of jet noise 

using either active or passive turbulence control measures 
(see Seiner 1992). Progress in this area has been limited 
by unclear understanding of the physical supersonic jet 
noise source mechanism. These mechanisms have been 
extensively studied using round jets. Non-round geometry 
of the jet exit has been experimentally studied for 
beneficial noise reduction relative to the round jets. Mach 
wave emission and shock noise are the dominant acoustic 
sources of supersonic jet noise. Improperly expanded 
nozzles produce shock noise that dominates acoustic 
emission in the jet forward quadrant. Shock noise, 
however, could be minimized through appropriate design 
of nozzle geometry. It has been observed experimentally 
that the acoustic radiation from jets is dominated by Mach 
waves (see review by Tam 1995). Turbulent structures 
traveling at supersonic speed within the jet are generally 
thought to be responsible for Mach waves, and they have 
been modelled as a combination of linearly unstable 
modes. Reduction of Mach wave emission represents the 
most serious challenge to the successful design of a 
suppressor nozzle. The understanding of jet turbulence 
and noise emission is very crucial for jet investigations. 
DNS of supersonic round jet was performed and brought 
much light to these mechanisms. Freund et al. (2000) 
simulated a perfectly expanded Mach 1.92 jet at 
ReD=2000 and its sound field. Watanabe et al. (2003, 
2006) performed linear stability analysis and DNS of a 
supersonic plane jet. Their results show that the plane jet 
(Mc =1.17) forced by a pair of oblique modes (the oblique 
mode is most unstable at high convective Mach numbers) 
with the subsonic phase speed suppresses the emitted 
Mach wave intensity. On the other hand, in thigh 
convective Mach number, the most unstable (first helical 
mode) modes have the supersonic phase speed in a round 
jet (Luo et al., 1997, Parras et al., 2010 and Watanabe 
2014). The supersonic phase speed of the most unstable 
mode in a round jet makes the suppression of Mach waves 
more difficult. 
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The linear inviscid instability wave model and 
Lighthill acoustic analogy approach have provided 
invaluable guidance to the development of the jet noise 
prediction (see Zorumski 1982). It is generally accepted 
that the mechanism for Mach wave radiation (Tam et al., 
1984) (as well as growth of compressible mixing layers, 
Morris et al., 1990) is strongly connected with the 
amplification rate of instability modes and that the 
instability wave scales with the convective Mach number. 
The real physical process, however, involves nonlinear 
interaction of various instability modes in the flow filed. 
DNS researches of the nonlinear interaction for the 
supersonic jets in the transition regime are important for 
understanding of these mechanisms.  

We investigate, by means of DNS, the spatially 
development of high Mach number round jet forced with 
the unstable/random disturbances. Both the fluid dynamic 
structures and noise of round jets are studied. In the 
present study, we focus on the effect of inflow 
disturbances on the Mach wave emission from the round 
jet using spatial 3-D DNS. The round jet is of interest, as 
described above, due to practical importance of supersonic 
combustion and jet noise generation. The sound fields 
related to the energy nonlinear evolution of various a pair 
of linear unstable modes are examined at high convective 
Mach numbers. In this pair, the effects of growth of a pair 
of first, second and third helical modes (m=±1, m=±2 and 
m=±3; m indicates the azimuthal wave number) on the jet 
sound fields and flow field in a round jet are presented.  

 
 
NUMERICAL METHODS 

In the direct numerical simulation, the non-
dimensional equations governing the conservation laws of 
mass, momentum, and energy for a compressible 
Newtonian fluid are solved using a fifth-order compact 
upwind algorithm for conservation form [1] with a time 
integration 4th-order Runge-Kutta algorithm. The 
governing equations in cylindrical coordinates are given 
as follows;  
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where 

 cUM j /  and c  is the speed of sound at 

the ambient fluid. The all variables, in all the following 
discussions, are non-dimensionalized by the characteristic 
physical scales such as 

jU ,  , T  and the jet nozzle 

radius of r0 where the subscripts j and   indicate the jet 
centerline and the ambient fluid, respectively. The 
Reynolds number is 
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The flow field of a jet issuing from circular nozzle 

into an ambient fluid can be divided into a potential core 
region, a transition region, and a fully developed region. 
The "top-hat" jet profile belongs to the potential core 
region with a thin but finite shear layer. We employed the 
mean velocity profile )(rU  given by 
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The mean temperature )(rT  was calculated with the 

Crocco-Busemann relation for unity Prandtl number; 
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where  is the ratio of specific heats. 

  cUM j /  and 

c  is the speed of sound at the quiescent stream. The jet 

centerline Mach number 
jjj cUM /  is obtained from 

the relation 
jj ccMM / . The jet was heated with 

exit temperature ratio 12.1/ TT j
. This ratio was used 

for the simulation of a perfectly expanded Mach 1.92 jet 
(Watanabe et al., 2002). A jet convective Mach number 
Mc may be defined by 
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By using equation (14), the convective Mach number for 
the present study is Mc = 0.97 (Mj= 1.89).  

For 3-D spatial DNS, after a grid-convergence 
analysis, the computational mesh was Nx×Nr×N= 
801×150×128. Mesh points were clustered toward the jet 
shear layer in the normal direction and downstream 
streamwise locations near the end of the potential core. 
NSCBC (the Navier-Stokes Characteristic Boundary 
Conditions, Poinsot et. al., 1992) were implemented in the 
treatment of the boundaries at the in/outflow and far 
normal regions. Periodic boundary conditions were 
implemented in the azimuthal direction. Outflow 
boundaries were located at x=35r0 in the streamwise 
direction and at r = 20r0. For a pair of helical modes case 
(m=±1, m=±2 and m=±3 case), the inlet disturbance vector 

 inininrxinin puuu ~,~,~,~,~~
in d  can be written as 

 

      
m

mmin tStmrdA )2(iexp)(ˆ~
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where 
md̂  is the eigenfunction of corresponding 

instability mode calculated by linear stability analysis. m 
and St indicate the corresponding azimuthal wave number 
and nondimensional frequency. The amplitude of each 
mode is 2% of the jet and the Strouhal numbers are set to 
be  St=0.1 closely corresponding to the maximum growth 
rate. On the other hand, the magnitude of the forced 
streamwise velocity disturbance is chosen to be 10% of 
the jet centerline velocity for the random case. 

 
 
RESULTS 
 
(a)    (b) 

 
 
(c)    (d) 

 
 
 
 
 
 
Figure 1 shows the vortex structures visualized with 

iso-surfaces of the second invariant Q of the velocity 

Figure 1.  Second invariant Q structure (iso-surfaces of 
Q=0.01) for a) random case, b) m=±1 case, c) m=±2 
case and d) m=±3 case. 
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gradient tensor. Typical vortex structures appear in the jet 
due to the growth of each inlet disturbance. In the random 
case, the vortex structures spread almost in all azimuthal 
directions (the cross-section view at the downstream 
location shows almost a circle shape from the jet center). 
In the m=±1 case, m=±2 case and m=±3 case, the vortex 
structures extend radially in the two, fore, six distinct 
azimuthal directions from the jet center line, respectively. 
In these cases, the vortex structures extend far away as 
compared with the random case. These characteristic 
expansions of vortex structures affect the jet velocity. 
Figure 2 shows the contour plots of instantaneous 
streamwise velocity at x=32r0 where y=r/r0 cos and 
z=r/r0 sin. In these figures, the same characteristic 
distributions as the vortex structures are also seen in the 
jet stream wise velocity. 

 
(a)    (b) 

 
(c)    (d) 

 
 

 
 
 

 
 
 
Figures 3(a), (b), (c) and (d) show the downstream 

evolution of mean streamwise velocity for random case, 
m=±1 case, m=±2 case and m=±3 case, respectively. In the 
random case, the contour plots of mean streamwise 
velocity spread gradually towards the downstream (Figure 
3a). On the otherhand, in the m=±1 case, m=±2 case and 
m=±3 case, growth of a pair of helical modes leads to 
sooner shear layers expansions around the end of jet 
potential region. Figure 3(b), (c) and (d) indicate that the 
shear layers spread rapidly around x=22r0, x=15r0, x=20r0, 
for m=±1 case, m=±2 case and m=±3 case, respectively. 
Around these points correspond with the point that 
characteristic expansions of vortex structures appear. 

The centerline streamwise velocity shown in figure 4 
clearly indicates the location where the potential core 
closes. The inflow disturbance also influences on the jet 

center line velocity distribution, as shown in Figure 4. In 
the m=±3 case, the jet center line velocity decreases 
sooner to uc=0.2 at the downstream location of x=35r0, 
though the jet center line velocity of the random case 
decreases to uc=0.4 at the same location.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
 
 
 
 
 

 

0 10 20 30
0

0.2

0.4

0.6

0.8

1

x/r0

u c

 random
 m=±1
 m=±2
 m=±3

 
 Figure 4.  Mean jet centerline velocity. 

Figure 3.  Downstream evolution of mean streamwise 
velocity (contour plots); a) random case,  a pair of  b) 
first helical modes case (m=±1), c) second helical 
modes case (m=±2) and d) third helical modes case 
(m=±3) at x=32r0.  

Figure 2.  The contour plots of  instantaneous 
streamwise velocity for a) randomcase,  a pair of  b) 
first helical modes case (m=±1), c) second helical 
modes case (m=±2) and d) third helical modes case 
(m=±3) at x=32r0.  
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(a)    (b) 

 
(c)    (d) 

 
 
 
 
 
 
 
Figures 5 indicates RMS of overall fluctuating 

pressure for the each case at x=32r0. In the m=±1 case, 
m=±2 case and m=±3 case, the distributions of pressure 
fluctuation magnitudes show the different geometric 
patterns. These patterns are caused by interfering between 
the pair of helical modes with the same frequency 
propagating mutually but in the opposite directions. Note 
that, with the increase of the azimuthal wave number m, 
the pressure fluctuation magnitudes become smaller at the 
jet far field. In the m=±3 case, radiated pressure 
fluctuations are especially smaller compared with the 
other cases. 

In order to find the reason of the pressure fluctuations 
in the jet mentioned the above, the linear stability analyses 
are carried out. Turbulent structures traveling at 
supersonic speed in the jet are generally thought to be 
responsible for Mach waves (see Papamoschou, 1997, 
Morris 2010 and Kearney-Fischer et al., 2011). Figure 6 
shows the Reynolds number dependence of the maximum 
linear growthrate i and the phase velocity cr corresponds 
with the maximum growth rate of the each helical mode. 
With the increase of the azimuthal wave number m, the 
maximum linear growth rate and phase velocity becomes 
smaller over the Reynolds number range shown in the 
figure. For m=3 at Re=1000, the phase velocity is lower 
than acoustic velocity of the ambient fluid c∞, and cr/c∞ 
remain near unity at high Reynolds number. This result 
suggests that the third helical mode may much less 
contribute to radiation of Mach waves. As figures 2 and 3 
show, the third helical mode is a good candidate to 
eliminate the acoustic waves in the round jet. DNS of the 
jet effectively forced by the third helical mode will be 
performed to achieve the Mach wave elimination at high 
Mach number. 
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CONCLUSIONS 
Spatial DNS of a supersonic round jet for Mc=2.0 has 

been performed. The numerical results provide new 
physical insights into jet expansion and noise generation 
in a round jet. Upstream disturbance conditions play an 
important role for the evolution of the downstream 
structure, such as development of shear layers and 
transition process in a jet. Growth of a pair of helical 
modes is responsible for the characteristic expansions of 
vortex structure and streamwise velocity in a round jet. 
Especially growth of a pair of third helical modes (m=±3) 
causes the early decay of jet centerline velocity. 
Furthermore, radiated pressure fluctuations generated by 
the growth of a pair of third helical modes (m=±3) which 
have subsonic phase velocity are suppressed compared 
with turbulent jet.  
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