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BACKGROUND
Entrainment, which refers to the assimilation process of

low-vorticity fluid into high-vorticity fluid along a turbulent non-
turbulent interface (TNTI), is a phenomenon that occurs wherever
a shear layer is present. Needless to say, this makes entrainment a
ubiquitous process. The exterior of jets, the intermediate interface
of mixing layers, the edge of turbulent boundary layers and the
periphery of isolated vortices all exhibit some form of entrainment
(Dimotakis, 1986; Shadden et al., 2007; Wolf et al., 2013; Chauhan
et al., 2014). Given the universality of these canonical flows, one
must not look far to find entrainment in both engineering and na-
ture.

In a seminal paper by Corrsin & Kistler (1955), it was pro-
posed that the TNTI possessed a finite thickness, across which
sharp spatial gradients in enstrophy, velocity and Reynolds stresses
should be observed. Due to technological limitations, the ability to
verify this proposal have been impossible until recently. The ad-
vent of velocimetry measurement techniques have allowed for the
spatially-resolved, conditional averaging of the cross-flow gradi-
ents relative to the TNTI. This in turn has shown the existence of
the sharp spatial gradient along the TNTI’s lower envelope. Sharp
gradients across the TNTI have now been repeatedly observed in
jets (Wolf et al., 2013; Mistry & Dawson, 2014), in canonical tur-
bulent boundary layers (Chauhan et al., 2014) and in stratified flows
(Krug et al., 2013). Current studies on entrainment have shown
that regardless of flow configuration, the entrainment of irrotational
fluid into the turbulent region follows a multi-step process: (i) an
induced inflow within the turbulent region draws irrotational fluid
towards it; (ii) irrotational fluid is engulfed within interfacial ar-
eas of the TNTI generated by large-scale eddies; (iii) small-scale
eddies transport kinetic energy from the turbulent region to the en-
gulfed fluid; and finally (iv) passive scalars are mixed via molecular
motions (Phillip & Marusic, 2012; Mistry & Dawson, 2014).

The current methodology used to investigate entrainment ex-
hibits limitations. The primary concern is the use of conditional
averaging, which is suitable for stationary, ergodic flows. In such
flows, the low-vorticity region and the high-vorticity region have
a negligible time derivative, and the flow exhibits self-similarity
along some axis. In contrast, unsteady flows are neither station-
ary nor do they exhibit self-similarity, thereby making them un-
suitable for conditional averaging. For example, contrast the TNTI
far downstream of a turbulent jet to that of a starting vortex that
forms on the suction side of an accelerating two-dimensional body,
as illustrated in Fig. 1. For convenience, a one-dimensional axis
s is fixed to the origin of the TNTI and all scalar properties of the
flow field (e.g. velocity and vorticity components) are represented
by Λ. For the case of a steady jet, the mean time derivative of Λ
is zero. Furthermore, the mean spatial derivative of Λ along s is
zero if the radial axis is normalized by the jet’s half radius. This

thereby permits conditional averaging to be performed at different
locations along the TNTI (points A and B) and at different times
(A and B with C). However, such is not the case for the TNTI that
forms behind the accelerating plate. It is unclear that the condi-
tional averaging of the TNTI at a single time instance would pro-
duce a meaningful result as it is no longer necessary for the TNTI
to be spatially similar along s. Furthermore, it is almost certain that
the conditional averaging of the TNTI from different instances in
time would result in a nonsensical result as the mean contour of the
TNTI develops with time. The unsuitability of conditional averag-
ing for non-ergodic flows underscores a need for alternate methods
in studying the entrainment dynamics of accelerating-flow cases.
Furthermore, conditional averaging is inherently weak in studying
issues of transport as it is devoid of any temporal information. The
heavy reliance on conditional averaging in studying entrainment
may stem from the traditional acquisition of data in an Eulerian
framework using existing probes such as hotwires or Particle Im-
age Velocimetry (PIV). The flow history of fluid as it is transported
across the TNTI, which requires data acquisition to be performed
in a Lagrangian framework, offers new insight into entrainment
dynamics. New measurement techniques to acquire Lagrangian
data, such as “Shake-The-Box” Tomographic Particle Tracking Ve-
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Figure 1. Schematics of entrainment in an ergodic flow
(a) and an accelerating flow (b). Ergodic flows allow for
the conditional averaging of the TNTI at different locations
(A and B) and at different time instances (A, B and C). In
contrast, accelerating flows do not lend themselves to con-
ditional averaging since different locations along the TNTI
are not necessarily similar and different time instances are
not comparable.
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locimetry (Tomo-PTV) described in Schanz et al. (2013, 2014),
as well as with the development of methods to extract meaningful
properties of the flow from such data (Rosi et al., 2014) have made
the Lagrangian framework an increasingly attractive alternative for
studying entrainment. Furthermore, the advent of Lagrangian co-
herent structures offers a frame-independent method for identifying
the TNTI (Peacock & Haller, 2013).

The Lagrangian framework offers the experimentalist a new
alternative for studying entrainment that both lends itself towards
the study of accelerating-flow cases and towards understanding
fluid transport across the TNTI. Thus, the current study works to-
wards the development of an alternative method in studying en-
trainment for accelerating-flow cases through a Lagrangian frame-
work. As a first step towards this goal, the current study presents
a method for quantifying entrainment across an accelerating shear
layer. A plate towed normal to its path at a constant rate of acceler-
ation is used as a case study. Similar to Shadden et al. (2006), the
method for calculating entrained mass uses the forward finite-time
Lyapunov exponent (FTLE) field within the wake of the plate to
determine total mass of rotational region, and measurements of the
shear layer at the plate’s edge to determine the vorticity-containing
mass fed to the rotational region. By taking the difference of these
two masses, the entrained mass is thus determined. The shear-
layer and FTLE measurements are first considered separately, and
then jointly when the method for calculating entrained mass is pre-
sented.

APPARATUS & METHODS
2D-PTV measurements were acquired behind an impulsively

started, 3mm-thick, knife-edged plate with a chord of c = 50mm
that was towed through a free-surface water channel at a 90

◦
angle-

of-attack. Fig. 2(a) presents a schematic of the towed-plate exper-
iment, while Fig. 2(b) presents various experimentally pertinent
lengths, including plate-tip gaps, aspect ratio, channel dimensions,
field-of-view (FOV) area and laser-sheet thickness. The plate was
accelerated constantly at 0.1m/s2 and 0.4m/s2, which will be re-
ferred to hereafter as the slow- and fast-acceleration cases, respec-
tively. The towing motion produced a symmetric vortex pair on the
suction side of the plate. PTV- and PIV-amenable images of a sin-
gle vortex were acquired along the plate’s midspan, within a 1.2c
by 1.2c FOV, and a 0.6c by 0.6c FOV, respectively. The PTV mea-
surements were used to quantify the total mass of the vortex, while
the PIV measurements were used to determine vorticity-containing
mass. To ensure that an equal number of images were acquired
between test cases, the slow- and fast-acceleration cases were mea-
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Figure 2. (a) Schematic of towed-plate apparatus. (b) Up-
stream view of apparatus with relevant dimensions.

sured using frame rates of 500Hz and 1000Hz, respectively. 100
runs of PIV and PTV data were acquired for each acceleration case.
The PIV data was phase averaged, while the PTV data was com-
piled into a single data set to improve spatial density. Images were
then imported into DaVis 8.2.0 for analysis, and resulting data were
than exported to MATLAB R2012a for post-processing. For the
PTV data, vorticity fields and FTLE fields were than calculated us-
ing a verified unstructured-grid gradient algorithm. Further details
of the apparatus and algorithm may be found in Rosi et al. (2014).

RESULTS
The current section first presents shear-layer measurements

to determine the rate at which vorticity-containing mass enters the
starting vortex. The forward FTLE field as calculated by the PTV
data is then demonstrated to accurately demarcate the vortex from
the ambient fluid, thereby acting as a effective tool to calculate the
total mass of the vortex. A method developed after Dabiri & Gharib
(2004) and Shadden et al. (2006) is presented for quantifying en-
trained mass into the vortex that forms behind the towed plate.

Shear-Layer Measurements
Fig. 3 presents the development of the starting vortex for

both acceleration cases at two snapshots of equal towed distances,
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Figure 3. Development of a vortex behind a linearly accel-
erating plate travelling at two different accelerations. Vor-
ticity is shown in red, and the top and bottom colourbars
pertain to the figures in the upper and lower rows, respec-
tively. In spite of travelling at different accelerations, the
development of the vortex collapses well with distance trav-
elled by the plate.
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Figure 4. Parameters that dictate vorticity-containing
mass of the starting vortex behind a plate traversing at a
velocity, at. The starting vortex is fed by a shear layer of
thickness, which is assumed to be a constant, d. The veloc-
ity profile of the shear layer is u(ζ , t) and is approximated as
the plate velocity, at. The vorticity-containing mass of the
starting vortex can be determined by integrating the contri-
butions made by infinitesimal mass units dmω . The spatial
dimensions of dmω are provided in the inset.

s/c. In each image, the plate was towed from left to right, gener-
ating a free shear layer that moves from right to left. The vortex
and the instabilities that encircle it appear nearly identical between
acceleration cases at instances of equal s/c, which suggests that
the vorticity-containing mass and the shear-layer structure scale
with the distance travelled by the plate regardless of the acceler-
ation. To understand the apparent scaling of vorticity-containing
mass with distance travelled by the plate, the current work adapts
the derivation found in Wong et al. (2013), which equates the
vorticity-containing mass of the starting vortex to the mass that
passes through the shear layer. Fig. 4 provides a schematic of a
starting vortex developing behind a infinitely-wide, flat plate un-
dergoing a linear acceleration. The starting vortex is fed vorticity-
containing mass from the shear layer, which has a thickness and
velocity profile of d(t) and u(ζ , t), respectively. Here ζ represents
the cross-stream position along the shear layer, while t is time. The
vorticity-containing mass per unit span can be determined by inte-
grating the mass transported through the shear layer over the entire
timespan of the motion:

mω = ρb
t∫

0

d∫

0

u(ζ ,T )dζ dt. (1)

If the thickness of the shear layer can be assumed constant, and
if the velocity across the shear layer can be assumed on the order
of the plate velocity, then the vorticity-containing mass (per unit
thickness) fed by the shear layer into the vortex can be expressed
as:

mω ∼ ρd
t∫

0

udt = ρds. (2)

Here, ρ is the fluid density, d is the thickness of the shear layer, and
s is the distance traversed by the plate. Eq. 2 suggests that if the
plate traverses some swept distance, then the vorticity-containing
mass will be equal regardless of the acceleration rate, which agrees
with the vorticity fields shown in Fig. 3. This assumes that the
shear-layer thickness (d) is constant. The 2D-PIV measurements
are revisited to verify this assumption, from which the shear-layer
thickness can be determined as a function of towed distance. The
method proposed by Brown & Roshko (1974) is used. The method

Figure 5. Shear-layer thickness (d/c) as a function of
towed distance, s/c. For both accelerations, the thickness
is approximately constant.

involves determining the point maximum vorticity on the pressure
side of the plate and subsequently evaluating the following expres-
sion:

d = |ωMAX|−1
∞∫

−∞

|ω|dζ , (3)

where ω is vorticity and ζ , like in Fig. 4, represents the cross-
stream axis along the shear layer. For the method described here,
ζ is set to pass through the point of maximum vorticity, in the
direction normal to the velocity at this point. Shear-layer thick-
ness (d/c) as a function of towed distance (s/c) is plotted for both
accelerations in Fig. 5. With the exception of a slight increase
and decrease initially exhibited by the fast- and slow-acceleration
cases, respectively, the shear-layer thickness is approximately con-
stant. The oscillation in thickness observed at s/c < 0.1 for both
acceleration cases is attributed to the difficulty in differentiating
the starting vortex from the shear layer at the initial portion of the
tow. The starting vortex and shear layer are both in close proximity
and of equal scale, making their differentiation difficult. In spite
of this, a general increasing or decreasing in shear-layer thickness
with increasing s/c is not observed. Nor is there any dependence
on shear-layer thickness with acceleration. Thus, the results sup-
port the assumption of constant shear-layer thickness and in turn
that vorticity-containing mass must scale with towed distance, s.

FTLE-Field Measurements
Fig. 6 presents scatter plots of tracked particles in the plate’s

wake for both linear accelerations. Two towed distances are pre-
sented here: s/c = 0.125 and s/c = 0.250. Particles have been
coloured white to red and white to blue according to their vorticity
and FTLE values, respectively. The FTLE and vorticity fields have
been calculated using pathlines with temporal lengths of 50% that
of the vortex’s timescale, which is defined as the time required for
a particle located along the periphery of vortex to complete a single
orbit about the vortex. As the plate traverses from left to right, the
high-vorticity region grows in area. In turn, the FTLE separatrix
that encircles the high-vorticity region grows. The area the separa-
trix encircles can be considered as the total mass of the vortex, mT .
This method was also used by Shadden et al. (2006) to determine
the total mass of a vortex ring.

The FTLE separatrices presented in Fig. 6 are thick and
appear with breakages, which in turn makes it difficult to accu-
rately determine the mass of the starting vortex. These issues are
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Figure 6. FTLE and vorticity (blue and red, respectively)
for a vortical flow generated by the towed plate at two towed
distances, s/c = 0.125 and 0.250, and travelling at two lin-
ear accelerations, a = 0.1m/s2 and 0.4m/s2, as indicated
by the column headers. The FTLE fields presented here are
calculated from pathlines with temporal lengths of 50% that
of the vortex’s timescale.

likely caused by compilation of several runs into a single data set,
since compiling runs increases the noise within the computed FTLE
field due to inter-trial intermitencies. To address this, the exper-
iments are currently being repeated using the “Shake-The-Box”
Tomographic-PTV evaluation approach described in Schanz et al.
(2013, 2014). The evaluation approach provides sufficient spatial
density to calculate the FTLE within a single run, thereby eliminat-
ing the need for run compilation.

Integral Method for Entrained Mass
An integral method for determining entrained mass is pre-

sented here. The method relies on LCS identification and is similar
to the method used by Dabiri & Gharib (2004) and Shadden et al.
(2006). The workings of the method are discussed here.

The integral approach is shown schematically in Fig. 7.
Vorticity-containing mass (mω ) is fed into the vortex from the shear
layer while irrotational mass (mε ) is simultaneously entrained into
the vortex. The total mass of the vortex is simply mT = ρAT , where
ρ and AT represent the fluid density and the planar area of the vor-
tex, while the vorticity-containing mass is determined as mω = ρds,
where d and s are the shear-layer thickness and distance travelled
by the plate. The entrained mass (mε ) is taken as the difference

Figure 7. Methodology for calculating entrained mass via
the control-volume approach. Entrained mass (mε ) is eval-
uated as the difference between vorticity-containing mass
(ρds) and the total mass contained by the starting vortex
(ρAT ).

Figure 8. Backward- and forward-FTLE ridges (red and
blue, respectively) about the planar area of a vortex ring;
from Shadden et al. (2006).

between the total vortex mass and the vorticity-containing mass:

ρ(AT −ds) = mε . (4)

The method requires accurate measurements of the shear-
layer thickness and the total area of the vortex. The shear-layer
thickness can be measured directly through planar PIV measure-
ments within a field-of-view on the order of the shear layer. The
planar area of the vortex is can be evaluated from the sepratrix that
is formed by the FTLE field. Standard PTV evaluation techniques
do not produce a sufficiently-defined seperatrix to accurately deter-
mine the total mass of the starting vortex. However, given sufficient
spatial density within a single run, the FTLE field has been shown
to precisely demarcate rotational fluid from ambient fluid, as was
done by Shadden et al. (2006) for the counter-rotating vortices of a
vortex ring, see Fig. 8.

CONCLUSIONS & OUTLOOK
To study the entrainment across an accelerating shear layer,

PIV and PTV measurements were performed in the wake of an ac-
celerating plate. The plate was accelerated at two constant rates of
acceleration, and towed normal to its path. The PIV measurements
demonstrated that the thickness of the shear-layer that forms at the
plate edge remains constant with time. The result suggests that
the vorticity-containing mass may be represented as ρds, where
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ρ is fluid density, d is the shear-layer thickness and s is the dis-
tance traversed from the plate. Using an unstructured gradient al-
gorithm described in Rosi et al. (2014), FTLE and vorticity fields
were calculated directly from the PTV measurements. The FTLE
formed a separatrix that divided the starting vortex from the am-
bient fluid. Thus, the area contained by the separatrix represented
the total mass of the starting vortex. However, the thickness of the
separatrix, as well as the breakages that appeared along the separa-
trix’s length made it difficult to accurately determine the enclosed
area. The poor quality of the separatrix was likely caused by the
compilation of all 100 runs into a single data set, since the com-
pilation of runs introduces noise due to inter-trial intermittencies.
Given the current quality the separatrix, total mass of the starting
vortex was left unmeasured.

To accurately measure the entrainment into the starting vortex,
a more precisely defined separatrix must be achieved. Towards this
end, new PTV measurements are being acquired using the “Shake-
The-Box” Tomographic PTV (TOMO-PTV) evaluation approach
described in Schanz et al. (2013, 2014). The approach achieves
a sufficient spatial density for calculating the FTLE within a sin-
gle run, and thereby eliminates the need for run compilation. It
is expected that these new measurements will result in a precisely
defined separatrix from which the total mass of the starting vortex
can be determined. Finally, by subtracting the vorticity-containing
mass as determined from the shear-layer measurements from the to-
tal mass of the starting vortex, the mass entrained across the shear
layer can be determined.
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