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ABSTRACT
A novel immersed boundary (IB) method based on an

implicit direct forcing (IDF) scheme is developed for in-
compressible viscous flows. A key idea for the present
IDF method is to use block LU decomposition technique
in momentum equations and Taylor series expansion in or-
der to construct IB forcing in a recurrence form, which
leads to impose more accurate no-slip boundary conditions
on the IB surface. To accelerate a convergence of the IB
forcing during an iterative procedure, the pre-conditioning
parameter is introduced in the formulation of the recur-
rence form. We perform numerical simulations of two-
dimensional flows around a circular cylinder for low and
moderate Reynolds numbers. The result shows that the
present IDF yields a better imposition of no-slip boundary
conditions on the IB surfaces for low Reynolds number with
a fairly larger time step than IB methods with different di-
rect forcing schemes due to an implicit treatment of diffu-
sion term for determining the IB forcing.

Introduction
The immersed boundary (IB) method was firstly devel-

oped by Peskin to model flow around a flexible heart (Pe-
skin, 1977). In IB method, the simulation is implemented
on the fixed Cartesian grid, and the boundary condition at
the surface of the object is indirectly imposed by adding a
continuous IB forcing at the neighboring points of the ob-
ject surface. The continuous IB forcing approach has been
known to be appropriate to resolve fluid-flexible body inter-
actions. However, this approach suffers from a numerical
instability due to the extremely large stiffness parameter for
mimicking a rigid body.

On the other hand, Fadlun et al. (2000) proposed a
discrete forcing approach for describing an immersed rigid
body in flow fields, where the IB forcing is given as a source
term in momentum equation. Later, Uhlmann (2005) de-
veloped an IB method with direct forcing (DF) scheme for
imposing no-slip boundary conditions on IB surface. The
IB method with DF scheme has been widely used in many

applications involving fluid-solid interaction problems be-
cause of the simplicity in its implementation. However, the
method may less accurately impose the boundary condition
on the IB surface, because the IB forcing is explicitly cal-
culated by neglecting viscous term. To improve numerical
accuracy, the multi-direct forcing (MDF) methods were in-
troduced as an extension of DF method (Wang et al., 2008;
Kempe & Fröhlich, 2012), where both of the IB forcing
and the provisional velocity are iteratively calculated. Al-
though the MDF schemes enable to more accurately impose
the boundary conditions at the IB surface than DF scheme,
velocity errors at the IB surface may not be negligible for
low Reynolds number flows.

This paper focuses on developing a novel immersed
boundary method based on implicit direct forcing (IDF)
scheme in order to impose more accurate no-slip boundary
condition on the IB surface. We use a block LU decom-
position technique for the system matrix and Taylor series
expansion for obtaining a recurrence formula of the IB forc-
ing. For an efficient computation, a pre-conditioning tech-
nique is also applied to the recurrence formula. Theoretical
and numerical comparisons of other direct forcing schemes
(Uhlmann, 2005; Kempe & Fröhlich, 2012) show that the
present IDF scheme is more accurate in imposing the no-
slip boundary conditions on the IB surface. Details of nu-
merical simulation results will be presented at the meeting.

Immersed boundary method
Projection method

The Navier-Stokes equations for incompressible flows
are written as,

∂u
∂ t

+u ·∇u =−∇p+
1

Re
∇2u+ f, (1)

∇ ·u = 0, (2)

where u, p,Re, and f are the non-dimensionalized velocity
vector, pressure, Reynolds number, and volume forcing, re-
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spectively. These equations are discretized in a staggered
grid with finite difference formulations using the implicit
Crank-Nicolson(CN) time integration for both of the vis-
cous terms and convective terms. The numerical proce-
dures based on the velocity-components decoupled projec-
tion method (Kim et al., 2002) in matrix-vector forms are
summarized as,

A u∗− f = r, (3)

∆t DG δ p = Du∗, (4)

un+1 = u∗−∆t G δ p, (5)

pn+1/2 = pn−1/2 +δ p, (6)

where a system matrix A and residual vector r are defined
as

A =
1
∆t

[
I +∆t

(
N − 1

2Re
L

)]
, (7)

r =
1
∆t

un−G pn−1/2 +
1

2Re
L un. (8)

Here, u∗ is an intermediate velocity vector and δ p is a
pressure difference. Discrete operators L ,N ,G and D
represent the discrete Laplacian viscous operator, convec-
tive operator, gradient operator and divergence operator, re-
spectively. The discrete operators are evaluated using the
second-order central difference scheme on the staggered
grid. Here, ∆t is the time increment and the superscript n
denotes the nth time step. For the operator N , the non-
linear terms are linearized by fully decoupling procedure
(Kim et al., 2002). The system matrix A is approximately
factorized in solving Eq.(3), which enables to use a tri-
diagonal matrix solver with preserving second order accu-
racy in time. The Poisson equation in Eq.(4) is solved using
a multi-grid method. In Eq.(3), f is the forcing which im-
poses the no-slip condition at immersed surfaces. Note that
the forcing is kept in the left hand side of Eq.(3). The reason
for the forcing being left side in that equation is to implic-
itly determine the forcing. Details for the implicit treatment
of the forcing are discussed in the next section.

Immersed boundary method with implicit di-
rect forcing

System matrix The present immersed boundary
method uses two kinds of grids for a computational domain
(Ω) as shown in Figure 1. One is the Eulerian grid where
the Navier-Stokes equation is computed. The Eulerian grid
nodes (xE ∈ Ω) are uniformly distributed with a grid spac-
ing h. The other one is the Lagrangian grid which exactly
represents a set of Lagrangian points (XL ∈ Γ) on the IB
surface. The velocity at a Lagrangian point can be interpo-
lated using the velocity distributions on the Eulerian grid as
follows:

U(XL) = ∑
E

u(xE)δh(xE −XL)h3 (9)

where U(XL) is the velocity at the Lagrangian point XL
while xE represents a point in the Eulerian grid and u(xE)
is the velocity at the point. The discrete delta function (δh)
in Roma et al. (1999) is used for the interpolation:

δh(x) =
1
h3 φ

( x
h

)
φ
( y

h

)
φ
( z

h

)
(10)

Figure 1. Lagrangian and Eulerian grid points in a com-
putational domain (Ω).

where x,y, and z are the Cartesian coordinates and φ is a
continuous function that is defined as

φ(r)=





1
6

(
5−3|r|−

√
1−3(1−|r|)2

)
, 0.5≤ |r| ≤ 1.5,

1
3

(
1+
√
−3r2 +1

)
, |r| ≤ 0.5,

0, otherwise.
(11)

Using Eq. (9), the velocity at the Lagrangian points holds
on U = BIu, where U is the velocity vector at the La-
grangian points and BI is interpolation operator matrix
which has NL × NE dimension where NL and NE are total
number of the Lagrangian and Eulerian points, respectively.
The elements for BI are defined as (BI)i j = δh(xi−X j)h3,
where the subscripts i and j refer to a column and row of
BI operator matrix, respectively. Similarly, the immersed
boundary forcing F at the Lagrangian points are extrap-
olated to the equivalent volume forcing f at the Eulerian
points by f = BE F, where BE is the extrapolation opera-
tor matrix which has NE × NL dimension. Its elements are
given as (BE) ji = δh(xi−X j)4VL, where 4VL is the dis-
crete volume at the Lagrangian grid. Here, we assume that
the discrete volume at the Lagrangian grid is the same as
the discrete volume at the Eulerian grid (4VL = h3). The
transpose of the interpolation operator matrix is equal to the
extrapolation operator matrix: BI = (BE)

T .
We propose an implicit direct forcing (IDF) scheme for

the IB method that applies the no-slip condition to the inter-
mediate velocity u∗ in order to avoid no additional Poisson-
type pressure solution procedure. The basic formulation of
the present method from Eqs.(3) and (14), and the no-slip
boundary condition at the IB surface can be written as,

A u∗−BE F = r, (12)

BIu∗ = Ud, (13)

where Ud and F are the desired velocity and forcing at the
IB surface, respectively. Note that Eq. (13) is a constraint
for velocity field near the IB surface related to the no-slip
boundary condition. A monolithic formulation for Eqs. (12)
and (13) in matrix form is following as,

(
A −BE
BI 0

)(
u∗
F

)
=

(
r

Ud

)
. (14)
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By applying a block LU decomposition, Eq. (14) can be
split into the following three-step procedure:

A u∗,0 = r (15)

BIA
−1BE F = Ud−BIu∗,0 (16)

u∗ = u∗,0 +A −1BE F (17)

Without a loss of accuracy, u∗ and F can be obtained from
the decoupled procedure in Eqs.(15)-(17). A new interme-
diate velocity u∗,0 is calculated from the momentum equa-
tion without volume forcing in Eq.(15). Then, solving Eq.
(16) with the known u∗,0 determines F that imposes the no-
slip condition on the Lagrangian points. The intermediate
velocity u∗ can be obtained from Eq.(17) with the already
determined F. Since a direct calculation of the inverse of A
is difficult due to an intensive computation and huge stor-
age, u∗ can be obtained from solving a linear equation re-
sulted from multiplying A to Eq.(17) as follows:

A u∗ = BE F+A u∗,0 = BE F+ r (18)

Iterative procedure Due to a huge computa-
tional complexity (O(N2

LN4
E)) for the matrix multiplica-

tion in BIA
−1BE , a direct or iterative solution proce-

dure for Eq.(16) may not be appropriate to obtain the IB
forcing F. We propose an approximate inverse procedure
of BIA

−1BE using Taylor series expansion. To avoid a
limitation in the use of Taylor series expansion, we intro-
duce a NL ×NL pre-conditioner matrix P assuming that
P(BIA

−1BE) is invertible and ‖P(BIA
−1BE)‖ ≤ 1.

Note that ‖ ‖ indicates bf a matrix norm. Multiplying[
P(BIA

−1BE)
]−1

P to the both sides of Eq.(16) yields
to

F =
[
P(BIA

−1BE)
]−1

P(Ud−BIu∗,0). (19)

By applying a truncated Taylor series expansion to Eq.(19),
an approximate forcing Fk with order of k in a recurrence
form can be expressed as

Fk =
[
INL −P(BIA

−1BE)
]

Fk−1 +P(Ud−BIu∗,0).
(20)

Assuming F0 = 0, the increment of the truncated forcing in
successive truncation orders can be determined by

4F ≡ Fk−Fk−1

= P(Ud−BIu∗,0)−P(BIA
−1BE)Fk−1

= PUd−PBI(A
−1BE Fk−1 +u∗,0)

= P(Ud−BIu∗,k−1), (21)

where an truncated velocity u∗,k−1 at the order of k−1 can
be obtained from Eq. (17) with F = Fk−1. The solution
procedure for the present IDF is summarized as

Fk = Fk−1 +P
(

Ud−BIu∗,k−1
)
, (22)

A u∗,k = BE Fk + r, (23)

where the order k can be interpreted as an iteration number
for the IDF.

Choice of pre-conditioner The role of the
pre-conditioner matrix P is to decrease the magnitude and
condition number of the matrix BIA

−1BE in Eq. (19) for
an efficient iterative procedure in Eqs. (22) and (23). Al-
though the ideal choice of P is to use the inverse matrix
of BIA

−1BE , which is not feasible due to a heavy com-
putational cost for calculating A −1. To overcome this is-
sue, we consider an approximate procedure of the inverse
matrix A −1 for constructing a pre-conditioner matrix P .
First, we define an appropriate pre-conditioner matrix as
P = (BIA

−1
P BE)

−1 by ignoring the convection term in
A for simplicity. The corresponding AP is given as,

AP =
1
4t

(
I− 4t

2Re
L

)
. (24)

The inverse of AP matrix in Eq. (24) can be approximated
by using Taylor series expansion for the two limiting cases.
For ‖4 t/(2Re)L ‖ � 1 with a second-order temporal ac-
curacy, the inverse of AP matrix is expressed as,

A −1
P ≈4tINE , (25)

which implies the case with a sufficiently small 4t or high
Reynolds number. Therefore, the pre-conditioner P can be
defined as,

P =
(
BIA

−1
P BE

)−1
=

1
4t

(BIBE)
−1 . (26)

On the other hand, for ‖4 t/(2Re)L ‖ � 1, applying Tay-
lor series expansion to the inverse of AP matrix for a low
Reynolds number case with sufficiently large4t yields to

A −1
P ≈−2ReL −1. (27)

Rather than directly calculating L −1, a further approxima-
tion for efficient computation of A −1

P was applied such that
L −1 ≈−CPh2INE , where the pre-conditioning parameter
CP is a positive constant and represents a characteristic of
the pre-conditioning matrix P . Since it is non-trivial to ob-
tain the optimal value of CP by solving the above optimiza-
tion problem, we found the optimal value of CP through
numerical simulations. The corresponding pre-conditioner
matrix P can be defined as,

P =
(
BIA

−1
P BE

)−1
≈ 1

2Reh2CP
(BIBE)

−1 . (28)

Based on P for the two limiting cases in Eqs. (26) and
(28), the final form of P is expressed as,

P =
1
4t

(
1+

γ
CP

)
(BIBE)

−1 (29)

where the diffusion parameter is defined as γ =
4t/(2Reh2).
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Computational procedure Based on the
choice of an appropriate pre-conditioner P in the previous
section, we recast Eq.(21) as

BIBE4F =

(
1+

γ
CP

)
Ud−BIu∗,k−1

4t
, (30)

where the dimension of BIBE is NL×NL. Note that CP is
a positive constant and represents a characteristic of the pre-
conditioning matrix P . Using the discrete delta function in
Eq.(10), each component of BIBE matrix is expressed as

(BIBE)i j = ∑
E

δh(xE −Xi)δh(xE −X j)h34VL, (31)

where the subscripts i and j indicate the column and row of
the matrix, respectively. Since BIBE is diagonal dominant
and symmetric matrix, we use the conjugate gradient (CG)
method for obtaining4F from Eq.(31).

Details for overall procedure of the pre-conditioned
IDF are summarized as follows: First, we obtain the inter-
mediate velocity u∗,0 by solving the momentum equation
without forcing in Eq.(15). Next, during the IDF iterative
procedure, the increment of the IB forcing 4F is obtained
by solving Eq.(30) at each iteration step. Here we use CG
method in the solution procedure since BIBE is a positive
definite. It is worthy to note that the computational time for
the solution procedure might be ignorable compared to that
for solving momentum equations or Poisson equation with
NE since a complexity for CG method for solving Eq.(30)
is known as O(NL) and NL is typically much smaller than
NE . Moreover, it is found that a converged solution of 4F
is obtained with a few iteration steps (less than 10 itera-
tions) in CG method, because BIBE is a diagonal domi-
nant, sparse, symmetric and compact matrix. Once the in-
termediate velocity u∗ converges, the Poisson equation in
Eq. (4) is solved for pressure difference δ p. Velocity field
un+1 at the next time step is updated by projecting the inter-
mediate velocity to a divergence-free vector field with the
pressure gradient as in Eq. (5). Also, the pressure pn+1/2 at
the next time step is updated by Eq. (6).

Theoretical comparison of DF schemes
Direct forcing

Based on the direct forcing (DF) procedure in Uhlmann
(2005), IB forcing F is explicitly defined as,

F =
Ud−BIu∗,0

4t
, (32)

where the forcing is proportional to the difference between
the intermediate velocity and the desired velocity at the IB
surface. Due to the simplicity, the DF scheme has been
widely used in simulations of fluid-solid interaction prob-
lems, especially for the particle-laden flows (Lucci et al.,
2010). However, we found that the DF scheme may not be
appropriate in providing accurate no-slip boundary condi-
tions at the IB surface with a larger4t under a CFL restric-
tion for a low Reynolds number flow. Details of numerical
simulation results will be discussed later.

Within the present IDF procedure, the DF scheme in
Eq. (32) can be easily derived from Eq. (16) under the as-
sumptions of A −1 =4tINE and BIBE = INE . The first

assumption can be interpreted as the fact that the influence
of convection and diffusion flow characteristics near the IB
surface is ignored in the calculation of the IB forcing. This
assumption is valid for a sufficiently small 4t at moderate
Reynolds number flows, while it causes numerical errors in
imposing no-slip boundary conditions at the IB surface for
a large 4t or low Reynolds number flows. The second as-
sumption indicates that each Lagrangian point has a corre-
sponding point in the set of Eulerian grid points. This may
lead to a first-order approximation of the interpolation or
extrapolation for transferring velocity and IB forcing infor-
mation in between Eulerian and Lagrangian points because
points on the IB surface are not mostly coincided with Eu-
lerian grid points.

Later, Su et al. (2007) proposed a variant of the DF
scheme based on an implicit treatment of F with the inter-
polation and extrapolation operator matrices as follows:

BIBE F =
Ud−BIu∗,0

4t
, (33)

which can be derived from Eq. (16) with the only assump-
tion of A −1 =4tINE . This scheme requires an iterative
procedure such as CG method for obtaining F at each time
step. Although the improved scheme can provide more ac-
curate no-slip boundary conditions than the DF scheme in
Eq. (32), it is found that the scheme has non-negligible nu-
merical errors in imposing no-slip boundary conditions at
the IB surface for low Reynolds number flows due to the
assumption of A −1 =4tINE .

Multi-direct forcing
Recently, Wang et al. (2008) and Kempe & Fröhlich

(2012) proposed a multi-direct forcing (MDF) scheme that
determines F iteratively with the following two steps:

4F =
Ud−BIu∗,k−1

4t
, (34)

u∗,k = u∗,k−1 +4tBE4F, (35)

where k denotes an iteration number for the MDF scheme.
It is worthy to note that the intermediate velocity u∗,k near
the IB surface is only updated by using 4F after u∗,0 is
obtained from the Eq. (15). Based on the present IDF
procedure, it is obvious that Eq. (34) can be derived by
setting the pre-conditioner matrix with P = (1/4t)INL in
Eq. (22). Also, assuming A −1 =4tINE in Eq. (23) with
the definition of 4F yields to the recurrence formulation
of u∗,k in Eq. (35). On the other hand, F in Eq. (19) with
A −1 =4tINE and P = (1/4 t)INL can be expressed as
Eq. (33). This implies that the MDF scheme is equivalent
to the improved DF scheme in Su et al. (2007) when F in
the MDF scheme converges. Compared to the improved
DF scheme, the MDF scheme is simpler and requires
no additional computational cost in constructing BIBE
matrix and obtaining the inverse of BIBE . However, the
MDF also uses the assumption of A −1 = 4tINE , which
may not provide accurate no-slip boundary conditions at
the IB surface for low Reynolds number flows.
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Table 1. Drag and lift coefficients, and Strouhal number for flow over a circular cylinder.

Re = 1 Re = 40 Re = 200

CD CD CD CL St

Choi et al. (2007) - 1.52 1.36±0.048 ±0.64 0.191

Rosenfeld et al. (1991) - - 1.31±0.04 ±0.65 0.20

Tritton (1959) 11.70 1.48 - - -

Present IDF 12.00 1.54 1.35±0.046 ±0.65 0.192

Numerical validations
Flow over a circular cylinder We consider

two-dimensional flows around a fixed circular cylinder at
low to moderate Reynolds number (Re =U∞D/ν) based on
the free stream velocity U∞ and diameter of the cylinder D.
The size of computational domain is 40D×40D. A Dirich-
let boundary condition(u/U∞ = 1,v/U∞ = 0) is applied at
the inflow boundary, a Neumann condition (∂u/∂y = 0)
with v = 0 is applied at far-field boundaries, and a convec-
tive boundary condition is imposed at the outflow boundary.

To validate the present IDF method for two-
dimensional flow over a bluff object, a comparison study on
aerodynamic characteristics of wake flows behind the circu-
lar cylinder is performed at different Reynolds numbers. A
non-uniform grid with 161× 161 grid points is used in the
whole domain while a uniform grid with 41×41 is used in
the vicinity of the cylinder (D×D) and the computational
time step is determined by CFL=1.0. The pre-conditioning
parameter is numerically optimized as CP = 50. Table 1
presents results for drag (CD), lift (CL) coefficients and
strouhal number (St). Here drag and lift forces are calcu-
lated by integrating each component of IB forces at La-
grangian points (Lai & Peskin, 2000). Compared to other
results from the references (Choi et al., 2007; Rosenfeld
et al., 1991; Tritton, 1959), the present IDF method accu-
rately predicts CD at low Reynolds numbers (Re = 1 and
40) as well as unsteady characteristics such as shedding
frequency and oscillations of CD and CL for a moderate
Reynolds number (Re = 200).

Computational performance analysis
Numerical comparison of DF schemes

Numerical simulations of two-dimensional flows over the
circular cylinder for different Reynolds numbers are per-
formed based on IB methods with different direct forcing
schemes. To evaluate numerical accuracy for the different
forcing schemes in imposing no-slip boundary conditions

Table 2. Velocity error ‖4Un+1
e ‖Γ at the IB surface de-

pending on Reynolds number for CFL= 1.

Re = 1 Re = 40 Re = 200

DF 6.74×10−1 1.94×10−1 1.36×10−1

MDF 4.82×10−1 5.15×10−2 1.90×10−2

IDF 3.63×10−2 3.64×10−4 7.15×10−4

on the IB surface, the velocity error is calculated as

‖4Un+1
e ‖Γ = ‖(Ud−BIun+1)/U∞‖Γ. (36)

Note that the computational time step is fixed with the unity
of CFL number. We consider ten iterations (Nk = 10) per
the time step for both the MDF and IDF schemes. Table
2 shows that the present IDF scheme is the most accurate
among the schemes for all of Reynolds numbers. This is re-
lated to the fact that both of DF and MDF schemes use the
assumption of A −1 =4tINE in the calculating the IB forc-
ing. Moreover, the velocity errors in DF scheme is larger
than those in MDF scheme, which is caused by the assump-
tion of BIBE = INE in DF scheme. To visualize whether
the no-slip boundary conditions are properly imposed on
the IB surface, stream tracers around the circular cylinder
for Re = 1 with CFL= 0.1 are shown in Fig. 2. This con-
firms that the present IDF method accurately predicts veloc-
ity fields near the IB surface not allowing the streamline to
be penetrated into the immersed body.

Conclusion
We developed a new formulation of immersed bound-

ary (IB) method based on direct forcing for incompressible
viscous flows. The new algorithm for the present IB method
were derived using block LU decomposition and Taylor
series expansion, and the direct forcing for imposing no-
slip condition on the IB surface was calculated in iterative
procedure. We performed simulations of two-dimensional
flows around a circular cylinder for low and moderate
Reynolds numbers. The result showed that present IDF
scheme yield a better imposition of no-slip condition on IB
surface for low Reynolds number with a fairly large time
step than the other direct forcing schemes.
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