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ABSTRACT 
We have carried out direct numerical simulation on 

turbulent flow in a slippery wavy channel where heat 
transfer occurs. The amplitude of the channel wavy wall is 
6 wall units and the local, instantaneous slip velocity is 
proportional to the velocity at an adjacent grid point to the 
wall. Two values proportional constants are used. The 
computational results show that the mean wall-shear 
stresses for the wavy walls do not depend on the slip 
velocity, and are much lower than those for a non-slip flat 
wall. This low wall-shear stress is due to the low gradient 
of mean velocity for the wavy walls. In addition, the mean 
Nusselt number for the wavy walls increases with an 
increase in the slip velocity. This increase in the Nusselt 
number is due to the decrease in the mean temperature 
gradient in the buffer region. This decrease in the 
temperature gradient is due to the gradient of turbulent 
heat flux in the region. 

 
 

INTRODUCTION 
Convective heat transfer associated with turbulent 

wall-bound flow is seen in industrial equipment and heat 
exchangers. Thus, this convective heat transfer has been 
studied widely. Nevertheless, the demand for techniques 
for the elucidation, prediction and control of turbulent heat 
transfer is high. This is because the heat transfer is 
enhanced by turbulence and, at the same time, the 
frictional drag increases by the Reynolds analogy. It is 
very important for energy-saving to prevent an increase of 
the frictional drag while keeping effective heat transfer.  

The present authors’ research group has studied 
turbulent flows over wavy walls, and obtained the 
reduction of friction drag (Fujii et al., 2011). Furthermore, 
Akaiwa, Nishida and Hagiwara (2014) have studied drag 
reduction and heat transfer for turbulent flow in channels. 
They found that wavy walls, whose ratio of the amplitude 
to the wavelength was much lower than the critical value 
for the onset of re-circulating flow, can reduce frictional 
drag. They also found an increase in the Nusselt number. 

However, the effects of slippery wavy walls on heat 
transfer were not discussed in detail. 

The present study provides computational results for 
various slippery wavy surfaces. We carry out direct 
numerical simulation for turbulent flow and heat transfer 
in a channel with gentle two-dimensional wavy surfaces, 
and investigate the possibility of drag reduction and heat 
transfer enhancement. The slippery surface is realized by 
using a slip velocity at the wall. This study focuses on the 
elucidation of the effects of the difference in the slip 
velocity on the turbulent friction drag and turbulent heat 
transfer. 

 
 
COMPUTATIONAL METHODS 
Computational domain 

We dealt with turbulent flow in a domain between two 
wavy walls as shown in Figure 1. The walls have an 
identical, sinusoidal shape. The x*-, y*- and z-axes were 
positioned in the streamwise, vertical and transverse 
directions, respectively. The x-axis aligns with the 
streamwise direction along the wall and the y-axis is 
normal to the wall. The domain was converted to the 
computational domain, which was a rectangular box of 
2πh × 2h × πh, by using an unsteady generalized 
curvilinear coordinate system.  
 
 
Governing equations 

The equation of continuity, the Navier-Stokes equation, 
and the energy equation were solved. 
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where: ξ and U are the coordinate and velocity in the 
computational domain respectively; J is the Jacobian of 
the transformation; u is the velocity in the physical 
domain; p is the pressure; ρ is the density; ν is the 
kinematic viscosity; T is the temperature; α is the thermal 
diffusivity; u  is the mean velocity in the x-direction; Cp 
is the specific heat at constant pressure and qw is the wall 
heat flux. 

 
 
Schemes and grid arrangement 

The governing equations were discretized with a 
collocated grid system. The velocity components, the 
pressure and temperature were defined at each grid point, 
while the product of the contravariant velocities and 
transformation Jacobian were defined at the midpoints 
between two neighboring grid points. The grid spacing 
was identical both in the x-direction and the z-direction. 
The spacing increased from the lower and upper walls in 
the η direction based on a hyperbolic tangent. The grid 
spacing was Δx+= 8.84, Δy + = 0.66 – 9.09 and Δz+ = 4.42 
in the case of the flat wall. The grid resolution of the 
present study is sufficiently comparable to that of 
Kawamura et al (Δx+= 9, Δy + = 0.40 – 11.5 and Δz+ = 4.5) 
(Kawamura et al., 1998; 2000).   

The 3rd-order accurate Runge-Kutta method was used 
for the time evolution. The 4th-order central difference 
scheme with the interpolating method for the collocated 
grid (Morinishi, 1996) was applied to the finite 
differencing of the convection terms of the NS equation. 
The 4th-order central difference scheme without the 
interpolation method was used to discretize the viscous 
term. The pressure Poisson equation was solved using the 
Fast Fourier Transform, the SOR method and the residual 
cutting method (Tamura et al., 1997). The methods are 
summarized in Table 1. 

 
 

Boundary conditions 
The periodic boundary condition was applied for 

velocity and pressure in the x+ and z+ directions. The mean 
pressure gradient, –dp+/dx+, was equal to unity and was 
identical in each case.  

A non-slip or slip boundary condition was adopted for 
the walls. In the case of the non-slip condition, u = v = w = 
0 at any moment at any location on the surface. In the case 
of the slip condition, the streamwise velocity was assumed 
to be proportional to the adjacent streamwise velocity, u = 
Bu1 and v = w = 0 at any moment at any location on the 
surface of the lower wall. u1 is the streamwise velocity at 
the adjacent grid to the surface. The values of B was set 
equal to 0.50 and 0.25. The slip length was equal to 0.33 
wall units and 0.165 wall units, respectively. The same 
conditions were used for the upper wall.  

The temperature at the lower wall was determined by 
the following equation: 

                                                                                 (4) 

 

 
Fig. 1 Wavy wall domain. 

 
Table 1 Computational condition and schemes. 

Δx+ (= Δxuτ / ν)

Δy+ (= Δyuτ / ν)

Δz+ (= Δzuτ / ν)

Upper : non-slip or slip

Lower : non-slip or slip

Time step Δt+ (= Δtuτ
2 / ν)

Collocated Grid

Grid number 128 × 64 × 128

Grid resolution

8.84

0.66 - 9.09

4.42

0.0090

y - direction

Schemes

Time evolution method 3rd-order accurate Runge-Kutta Method

Coupling Algorithm Fractional Step Method
(FFT＆SOR＆Residual Cutting Method)

Difference method 4th-order central difference

Non - dimentional
number

Reynolds number Reτ(= uτh / ν) 180

Prandtl number 2

Discretized

Grid

Boundary condition

x, z - direction Periodic

 
 
where θ is the temperature difference, Tw-T (Tw is the wall 
temperature.). θ0 (Tw-T0, with T0 representing the 
temperature at a point inside the wall) is the temperature 
difference inside the wall, and θ1 (Tw-T1, with T1 
representing the temperature at an adjacent point to the 
wall) is the temperature difference for the adjacent 
location. Δy1/2  is the distance between the wall and the 
adjacent point.  θτ is the friction temperature, and uτ is the 
friction velocity. κ is thermal conductivity, and ν is the 
kinematic viscosity. Reτ (=hu τ/ν) is the friction Reynolds 
number.  Pr is the Prandtl number. The same conditions 
were used for the upper wall. 
 
 
Initial conditions 

A database made up of fully developed flow between 
two flat walls was adopted as the initial velocity field. The 
wavy wall was realized by increasing the amplitude 
linearly in the period of 0 ≤ t+ ≤ 36. 

We used the empirical equation obtained by Kader 
(1981) for the initial mean temperature profile. 
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Table 2 Condition of wall. 
Flat Non-slip Slip 1 Slip 2

A max
+ 0 6 6 6

wall non-slip non-slip slip slip

u wall
+ 0 0 0.25u 1 0.50u 1  

 
 

Wall conditions 
Table 2 shows the conditions of amplitude and slip 

velocity. The amplitude of the wavy walls A was set equal 
to 6ν/uτ. Flow separation was not predicted because the 
ratio A/λ(=0.0127) was lower than the critical value of 
0.02 (Tuan et al., 2006), over which the separation of flow 
occurs. Moreover, meandering flow was not predicted 
because the ratio of amplitude to the channel height (=2h) 
was 1/60. In the discussion below, the non-slip flat wall is 
referred to as Flat. The non-slip wavy wall is referred to as 
Non-slip (u = 0). And the wavy walls with the slip 
velocity are referred to as Slip 1 (u = 0.25u1) and Slip 2 (u 
= 0.50u1).  

In each case, the Reynolds number Reτ (= huτ/ν) was 
180, where ν is the kinematic viscosity and uτ is the 
friction velocity. Thus, uτ was unchanged in time and 
space. The Prandtl number was set to be 2. 
 

 
Spatiotemporal average statistics 

 In our study, we discuss the spatiotemporal average 
values over a plane normal to the y-axis in the period 900 
< t+ < 4500. We confirmed that the temperature field and 
the flow field were developed at t+= 900. The fluctuating 
components of velocities and temperature were defined by 
the difference between a local instantaneous value and its 
spatiotemporal average value.  
 
 
RESULTS AND DISCUSSION 
Mean velocities 

Figures 2 and 3 indicate the profiles of streamwise 
mean velocity. In the linear sub-layer, the mean velocity 
in the case of Slip 2 has the highest values compared with 
that in other cases, while the mean velocity in the case of 
Flat has the highest values in the buffer layer and log-law 
region. The mean velocity profile in Flat is in agreement 
with the profile obtained by Kawamura et al. (1998, 2000).  
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Fig. 2 Profiles of mean velocity. 

y+

u+

Flat
Non-slip
Slip 1
Slip 2

0 1 2 3 4 5

1

2

3

4

5

 
 

Fig. 3 Profiles of mean velocity in the linear sub-layer. 
 

Table 3 Bulk mean velocity. 
Flat Non-slip Slip 1 Slip 2

u bulk
+ 13.13 12.53 12.63 12.70  

 

The bulk mean velocity, ( ) +++ ∫= dyuhu h
bulk

2
021 , is 

shown in Table 3. In comparison with the case of Flat, it is 
found that the bulk mean velocity in the case of Non-slip 
decreased by 4.53% due to the wavy walls. Also, the bulk 
mean velocity in the case of Slip 1 and Slip 2 decreased 
by 3.77% and 3.24% due to the slip boundary conditions. 
The bulk mean velocity in the case of the wavy walls 
increased with an increase in the slip velocity. 

 
 

Turbulence intensities 
Figure 4 indicates the profiles of turbulence intensities. 

We confirmed that the turbulence intensities in the case of 
Flat are in agreement with the predicted results obtained 
by Kawamura et al. (1998, 2000). The turbulence 
intensities in the case of the wavy walls are higher than 
those in the case of the flat wall in the linear sub-layer and 
the buffer layer, particularly in the case of the wavy walls 
with the slip velocity. The main flow is accelerated in the 
near-wall, uphill regions and is slightly decelerated in the 
near-wall, downhill regions. Thus, the mean velocity 
fluctuates regularly in the streamwise direction. This 
fluctuation causes an increase in the RMS values of 
fluctuating velocity. This is the reason for the increases in 
the turbulence intensities in the case of the wavy walls. 
 
 
Shear stresses 

Figure 5 indicates the profiles of the viscous shear 
stresses and the Reynolds shear stresses. The viscous 
shear stresses in the case of the wavy walls are lower than 
those in the case of the flat wall in the region of y+ < 10. 
There are not large differences in the viscous shear stress 
in the laminar sub-layer in the cases of the wavy walls. 
This is due to the fact that no difference is seen in the 
gradient of mean streamwise velocity in the sub-layer, 
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regardless of the type of slippery surface shown in Fig. 3. 
Therefore, the slip velocity of the wavy walls does not 
affect the viscous shear stress.   

The Reynolds shear stresses in the case of the wavy 
walls are lower than those in the case of the flat wall in the 
region of y+ < 20. Also, the Reynolds shear stresses in the 
case of the wavy walls take negative values in the region 
of y+ < 10. The reason for the negative values of the 
Reynolds shear stresses is probably the enhancement of 
positive fluctuation velocities in the streamwise and wall-
normal directions in the uphill regions of the wavy walls. 
The slip velocity does not affect the Reynolds shear stress 
in the buffer region, but slightly affects the stress in the 
linear sub-layer.  

Table 4 shows the wall shear stress, which was 
defined by the sum of the viscous shear stress and the 
Reynolds shear stress at the adjacent grid to the surface. In 
comparison with the case of Flat, the wall shear stress in 
the case of the wavy wall is found to be 7.68%, 8.04% and 
8.34% lower in the case of Non-slip, Slip 1 and Slip 2 
respectively. The wall shear stress in the case of the wavy 
walls slightly decreases with an increase in the slip 
velocity. 
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Fig. 4 Profiles of turbulence intensities. 
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Fig. 5 Profiles of shear stresses. 

 

Table 4 Wall shear stress. 
Flat Non-slip Slip 1 Slip 2

0.999 0.922 0.919 0.916
 wall shear

stress  
 
 

Mean temperature  
Figures 6 and 7 indicate the profiles of mean 

temperature. The mean temperature in the case of Non-
slip in the region of y+ > 10 is slightly lower than that in 
the case of Flat. Also, the mean temperatures in the case 
of Slip 1 and Slip 2 in the region of y+ > 10 are slightly 
lower than those in the case of Non-slip and Flat. The 
mean temperature in the wavy walls decreases with an 
increase in the slip velocity of the wavy wall.  

Table 5 shows the bulk mean temperature θbulk
+, 

where ( ) +++ ∫= dyh h
bulk

2
021 θθ . The bulk mean 

temperature decreases with an increase in the slip velocity. 
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Fig. 6 Profiles of mean temperature. 
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Fig. 7 Profiles of mean temperature in the linear sub-layer 
and the buffer region. 

 
Table 5 Bulk mean temperature. 

Flat Non-slip Slip 1 Slip 2

θ bulk
+ 19.64 19.43 19.39 19.04  
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Nusselt number 
Table 6 shows the mean Nusselt number. We 

calculated the mean Nusselt number from the profile of 
mean temperature. The mean Nusselt number is derived 
by the following equation (Kawamura, 1998).  

 
2

0
2Re Pr/

h
Nu dyτ θ + += ∫  

 
The Nusselt number in the case of the wavy wall is 2.0%, 
2.2% and 4.2% higher in the cases of Non-slip, Slip 1 and 
Slip 2 respectively than that in the case of Flat. 
 

Table 6 Mean Nusselt number. 
Flat Non-slip Slip 1 Slip 2

Nu 36.66 37.38 37.45 38.16  
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Fig. 8 Profiles of wall-normal turbulent heat flux. 
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Fig. 9 Gradient of the turbulent heat flux (0 ≤ y+ < 15). 

Turbulent heat flux 
Figure 8 indicates the profiles of the wall-normal 

turbulent heat flux, v θ+ +− , with an empirical equation 
(Antonia et al., 1991). In Fig. 8, the wall-normal turbulent 
heat flux takes positive values in the whole region in the 
case of the flat wall. On the other hand, it takes negative 
values in the region of y+ < 8 in the case of the wavy 
walls. In the region where the wall-normal turbulent heat 
flux takes negative values, the Reynolds shear stress also 
takes negative value in Fig. 5. Thus，in these specific 
regions, the velocity fluctuation of the wall normal 
direction contributes noticeably to the modification of the 
turbulent heat flux and the Reynolds shear stress. 
Furthermore, the similarity of the turbulent heat flux to the 
Reynolds shear stress is confirmed. 

The values of wall-normal turbulent heat flux depend 
on the slip velocity. The wall-normal turbulent heat flux 
decreases with an increase in the slip velocity. This is due 
to the Reynolds analogy between the Reynolds shear 
stress and the wall-normal turbulent heat flux. On the 
other hand, the wall-normal turbulent heat flux in the 
buffer region increases with an increase in the slip 
velocity. This is slightly different from the dependency of 
the Reynolds shear stress in the region on the slip velocity. 
This is probably due to the difference between the effects 
on the fluctuating velocity of the slip condition for 
velocity and the effects on the fluctuating temperature of 
the non-slip condition for temperature.  

The wall-normal turbulent heat flux in the case of the 
wavy walls recovers in the range of 4 ≤ y+ < 20. The 
gradient of the turbulent heat flux is high in this range. 
Figure 9 indicates the profile of the gradient of the 
turbulent heat flux in the range of 0 ≤ y+ < 15 in the y-
direction in the cases of the wavy walls. The higher the 
slip velocity, the higher the gradient of the turbulent heat 
flux is in the range of 2 ≤ y+ < 7. This high gradient of the 
wall-normal turbulent heat flux contributes significantly to 
the diffusion term in the averaged energy equation. As a 
result, the mean temperature gradient decreases in the 
range. This is the reason for the low temperature values in 
the case of the slippery wavy walls shown in Fig. 7. This 
low temperature leads to the increase in the Nusselt 
number shown in Table 6.  

 
 

CONCLUSION 
We carried out direct numerical simulation for 

turbulent flow in a channel whose heating walls are 
sinusoidal wavy-shaped. The ratio of amplitude and 
wavelength for the wavy wall was so low that the 
separation and reattachment for flow did not occur. 
Moreover, we have dealt with slippery surfaces. The main 
conclusions obtained are as follows: 

(1) In the case of the wavy walls, the viscous stresses 
were reduced by the gentler velocity gradient in the near-
wall region as compared with the case of the flat wall. It 
was found that there was no difference in the viscous 
stress by the slip conditions. As a result of the slight 
decrease in the Reynolds shear stresses in the near-wall 
region with an increase in the slip velocity, total shear 
stress slightly decreased.  

(7) 
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(2) In the case of the wavy walls, the mean Nusselt 
number was found to be higher than that of the flat wall. 
Also, the mean Nusselt number increased with an increase 
in the slip velocity.  

(3) The turbulent heat flux was found to take negative 
values in the linear sub-layer and the buffer region. The 
gradient of the turbulent heat flux in the buffer region 
increased with an increase in the slip velocity. This 
increase in the gradient of the turbulent heat flux leads to 
the gentler gradient of the mean temperature in the buffer 
region than that in the other cases. This is the reason for 
the lower bulk mean temperature and higher Nusselt 
number in the case of the wavy walls with the high slip 
velocity than that in the other cases.  
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