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ABSTRACT
The energy transfer from large-scale to small-scale

around elliptical Burgers vortices is analytically and nu-
merically examined. The elliptical Burgers vortex is con-
structed by a background straining flow to the Burgers vor-
tex, so that the Burgers vortex becomes non-axisymmetric.
By taking a spatial filter to the elliptical Burgers vor-
tices, we obtain the filtered velocity field. In large eddy
simulation (LES), understanding the energy transfer from
resolved-scale to subgrid-scale (SGS), the so-called for-
ward scatter (FS) and backward scatter (BS), around the
eddy is important. The SGS stress tensor is decomposed
to Leonard, cross and Reynolds terms. Those contributions
to the energy transfer are discussed. The FS region of the
Leonard term appears along the major axis of the elliptical
Burgers vortex. For cross and Reynolds terms, the FS re-
gions emerge along the minor axis. The Reynolds term has
much smaller intensity than the cross term. The SGS energy
transfer distributions due to modified Leonard, cross and
Reynolds terms, Bardina models and Smagorinsky model
are discussed. This simple and analytical a priori test is use-
ful to understand the feature of the decomposed and mod-
elled terms for the SGS energy transfer.

INTRODUCTION
Vortex tubes, in other words, coherent eddies or en-

ergy containing eddies, emerge in turbulence. The coherent
eddies in direct numerical simulation (DNS) are well ap-
proximated by the Burgers vortex (see, e.g., Tanahashi et
al., 1994; Das et al., 2006; Wang et al., 2007). The high
energy dissipation region in DNS has a double-peak struc-
ture around the eddy (Tanahashi et al., 1994; Kida & Ohk-
itani, 1992). The change of the double-peak structure with
Reynolds number is numerically explained using a non-
axisymmetric strained vortex (Kida & Ohkitani, 1992); here
we call it the elliptical Burgers vortex. Moreover, the ellipti-
cal Burgers vortices are analytically solved under the large-
Reynolds-number asymptotics, and the Reynolds number
dependence of the high energy dissipation region is well
reproduced (Moffatt et al., 1994).

In large eddy simulation (LES), the energy transfer be-
tween large-scale and small-scale is of great importance.
The energy transfer from large-scale to small-scale, the so-
called forward scatter, around the eddy occurs at the dif-
ferent location of the high energy dissipation as shown in
DNS (Aoyama et al., 2005). The high forward scatter re-

gion has also a double-peak structure around the eddy in
the log layer of wall turbulence experiments (Natrajan &
Christensen, 2006). In order to consider the energy transfer,
the analytical approach is useful to understand the feature
of the energy transfer between the scales.

In this study, the energy transfer around the elliptical
Burgers vortices is analytically and numerically examined.
The energy transfer through the Leonard, cross, Reynolds
terms decomposed from the subgrid-scale (SGS) stress ten-
sor is also reproduced and those structures are discussed.

ANALYTICAL AND NUMERICAL METHODS
We use the analytical solution of the elliptical Burgers

vortex (Moffatt et al., 1994) for the background straining
flow U = (αx,βy,γz) where α + β + γ = 0, α < 0 < γ ,
β > α . The strain parameter is selected based on the DNS
results (Wang et al., 2007); λ = (α −β )/(α +β ) = 9, α =
−(1 + λ )/2 = −5, β = −(1 − λ )/2 = 4. The axis of the
vortex aligns in z direction. The vorticity of the Burgers
vortex for α = β is denoted as

ω(r) =
γΓ

4πν
exp

(
− γr2

4ν

)
, ReΓ = Γ/ν (1)

where Γ is circulation, ν is viscosity, and ReΓ is Reynolds
number.

Velocities ux and uy in x and y directions and vorticity
ω are defined with stream function ψ .

ux = ∂ψ/∂y, uy = −∂ψ/∂x (2)

ω =
∂uy

∂x
− ∂ux

∂y
= −∇2ψ (3)

Γ =
∫ ∫

ω(x,y)dxdy (4)

Steady vorticity equation is obtained as

(αx+ux)
∂ω
∂x

+(βy+uy)
∂ω
∂y

= γω +ν∇2ω (5)

When we normalize the above equation with

(x∗,y∗) = (x,y)/δ , (α∗,β ∗) = (α,β )/γ,

ψ∗ = ψ/Γ, δ = (ν/γ)1/2 (6)
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Figure 1. Eddies Q = 100 (white), negative Q region Q = −100 (green) and forward scatter region −τi jSi j = 80 (red) at
Reλ = 60.

Figure 2. Analytical vorticity distribution of the elliptical
Burgers vortex at ReΓ = 500 with α : γ : β = −5 : 1 : 4.

We obtain a normalized steady vorticity equation

∂ (ψ ,ω)

∂ (x,y)
= ε

[(
αx

∂
∂x

+βy
∂
∂y

)
ω −ω −∇2ω

]
(7)

ψ = ψ0(r)+ ε1 f (r)sin2θ + ε2ψ2(r,θ) (8)

f ′′ + r−1 f ′ −4r−2 f = −( f − r2/4)r2/[4(er2/4 −1)] (9)

ω0(r) =
1

4π
e−r2/4 (10)

ε = 1/ReΓ = ν/Γ ≪ 1, ε1 = λε (11)

In the present study, we use ε = 1/ReΓ = 1/500.
In order to obtain the filtered velocity field, we use a

differential filtering with ∆ = 5/4rmax,

ui = ui +
∆2

24
∆ui +O(∆4

), ui = ui +u′′
i (12)

where rmax = 2.2418 is the radius at maximum azimuthal
velocity for ω0.

As a result, the energy transfer for the forward scatter

Figure 3. Velocity vectors around the elliptical burgers
vortex.

Figure 4. Analytical distribution of the SGS energy trans-
fer (−τi jSi j) around the elliptical Burgers vortex.

is defined as

−τi jSi j > 0, τi j = uiu j −uiu j, Si j =
1
2

(
∂u j

∂xi
+

∂ui

∂x j

)

(13)
where τi j is the SGS stress tensor, Si j is the velocity strain
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Figure 5. Decomposed distributions the SGS energy transfer (−τi jSi j) denoted in Eq. (25); the terms including D0(r) (upper
left), D2(r) (upper right), E0(r), E1(r), E2(r) and E3(r) (lower).

Figure 6. Energy transfer distribution of net FS for
−τi jSi j .

tensor, and the overline (-) shows filtered variables for a re-
solved scale. A filtering operation with the finite difference
method is adopted. The SGS stress tensor is decomposed
into the Leonard term Li j , the cross term Ci j , and Reynolds
term Ri j with ui = ui +u′′

i as follows.

τi j = Li j +Ci j +Ri j (14)

Li j = uiu j −uiu j (15)

Ci j = uiu′′
j +u′′

i u j (16)

Ri j = u′′
i u′′

j (17)

Germano (1986) modified the above terms to satisfy
the Galilean invariance as follows.

τi j = Lm
i j +Cm

i j +Rm
i j (18)

Lm
i j = uiu j −uiu j (19)

Cm
i j = uiu′′

j −uiu′′
j +u′′

i u j −u′′
i u j (20)

Rm
i j = u′′

i u′′
j −u′′

i u′′
j (21)

Bardina (1980) proposed a model using GS (resolved)
velocity for the cross and Reynolds terms.

CB
i j = ui

(
u j −u j

)
+

(
ui −ui

)
u j(≈ Ci j) (22)

RB
i j =

(
ui −ui

)(
u j −u j

)
(≈ Ri j) (23)

τi j ≈ Li j +CB
i j +RB

i j = Lm
i j (24)

DNS of 1283 is carried out at Reλ = 60 based on Taylor
micro scale for homogeneous isotropic turbulence with the
fourth-order central finite difference method. The domain
size is 2π × 2π × 2π and the periodic boundary condition
is used. The MAC scheme is adopted for the coupling of
velocity and pressure and the Poisson equation for pressure
is solved by using FFT method. The third order Adams-
Bashforth method is used for time marching scheme. The
resolved scale variable for LES of 323 is produced with a
Gaussian filter of filter width 2π/27 (Kobayashi, 2005).

RESULTS
Figure 1 shows the resolved-scale eddies extracted

with the second invariance Q of velocity gradient tensor
(white, positive Q; green, negative Q) and the forward scat-
ter (FS) region (red). The positive Q shows the eddy struc-
ture, while the negative Q region has a double-peak struc-
ture. The forward scatter region well correlates with the
negative Q region and has also a double-peak structure. This
fact is consistent with the result in the wall turbulence ex-
periment (Natrajan & Christensen, 2006).

The analytical vorticity distribution of the elliptical
Burgers vortex at ReΓ = 500 with α : γ : β = −5 : 1 : 4
is shown in Fig. 2. Figure 3 shows the velocity vectors
around the elliptical Burgers vortex. These distributions are
consistent with the DNS results (Wang et al., 2007).

Figure 4 shows an analytical distribution of the SGS
energy transfer (−τi jSi j) around the elliptical Burgers vor-
tex. Red colour shows the FS region and Blue colour shows
the backward scatter (BS) region. Those regions have dou-
ble peak structures. The SGS energy transfer distribution is
similar to that obtained in a log layer of wall turbulence ex-
periments (Natrajan & Christensen, 2006). The FS appears
the velocity field from major axis to minor one, whereas the
BS emerges that from minor axis to major one.
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Figure 7. SGS energy transfer through the Leonard term
(−Li jSi j).

Figure 8. SGS energy transfer through the cross term
(−Ci jSi j).

Figure 9. SGS energy transfer through the Reynolds term
(−Ri jSi j).

Figure 5 shows the decomposed distributions into the
terms denoted in the following equation.

Figure 10. SGS energy transfer through the modified
Leonard term (−Lm

i jSi j).

Figure 11. SGS energy transfer through the modified
cross term (−Cm

i j Si j).

Figure 12. SGS energy transfer through the modified
Reynolds term (−Rm

i jSi j).

−τi jSi j =
∆2ε
12

[D0(r)+(ε1 sin2θ)D2(r)]

+
∆4ε
288

[E0(r)+(λ cos2θ)E1(r)

+ (ε1 sin2θ)E2(r)+(λε1 sin4θ)E3(r)] (25)
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Figure 13. Energy transfer distribution with Smagorinsky
model (CS = 0.1).

Thus, if we integrate Eq. (25) in the plane, the terms
with D2(r), E1(r), E2(r) and E3(r) are canceled out. There-
fore, we obtain the following net FS with the terms of D0(r)
and E0(r) and the distribution as shown in Fig. 6.

∫ ∞

0

∫ 2π

0
−τi jSi jrdrdθ =

∆2ε
96π

[
1− 5(log4−1)∆2

768

]

(26)
Figures 7, 8 and 9 display the SGS energy transfer

distributions of Leonard, cross and Reynolds terms from
the analytical solution. The forward scatter region of the
Leonard term appears along the major axis of the elliptical
Burgers vortex. For cross and Reynolds terms, the forward
scatter regions emerge along the minor axis. The Reynolds
term has much smaller intensity than the cross term. Horiuti
(1989) showed inverse correlations between L12 and C12 in
a channel flow. That result is consistent with our result as
shown in Figs. 7 and 8.

The SGS energy transfer −τi jSi j is decomposed into
the modified terms proposed by Germano (1986). Figures
10, 11 and 12 show the SGS energy transfer distributions of
modified Leonard, modified cross and modified Reynolds
terms. The energy transfer distribution due to the cross
term (−Ci jSi j) inversely correlates with the modified cross
term (−Cm

i j Si j). Horiuti (1997) showed good correlations
between Lm

i j and Cm
i j in a channel flow and a mixing layer.

That result is consistent with our result as shown in Figs.
10 and 11. Salvetti & Banerjee (1995) showed good cor-
relations among τi jSi j , Lm

i jSi j and Cm
i j Si j . Those results are

supported with our results in Figs. 4, 10 and 11.
If we use Smagorinsky model

τi j = −2CS|S|Si j, (|S| =
√

2Si jSi j) (27)

wih the model constant CS = 0.1, we get the energy transfer
distribution as shown in Fig. 13.

When we use Bardina models for the cross and
Reynolds terms, we obtain the energy transfer distributions
as shown in Figs. 14 and 15. The energy transfer distri-
bution of −CB

i jSi j well correlates with that of −RB
i jSi j . The

term CB
i j is well modeled for the cross term Ci j in compari-

son with Figs. 8 and 14. Horiuti (1989) showed good corre-

Figure 14. Energy transfer distribution with Bardina
model (CB

i j) for the cross term.

Figure 15. Energy transfer distribution with Bardina
model (RB

i j) for the Reynolds term.

lations between C12 and CB
12 in a channel flow. That result

is consistent with our result as shown in Figs. 8 and 14.

SUMMARY
The SGS energy transfer around an elliptical Burgers

vortex was examined analytically. The following results
were obtained.

Forward scatter (FS) and backscatter (BS) have double
peak structures. The FS appears the velocity field from ma-
jor axis to minor one, whereas the BS emerges that from
minor axis to major one. Net FS takes place at the centre of
vortex, because those double peak structures are cancelled
by integration of the SGS energy transfer in the azimuthal
direction. The amount of the net FS is independent of the
strain parameter λ , and has a peak with a filter width. From
a decomposition to Li j , Ci j , Ri j , the distribution of Li jSi j
has negative correlation with that of Ci jSi j , and Ri jSi j con-
tributes a little to τi jSi j . Cm

i j Si j correlates inversely with
Ci jSi j , and has good correlation with τi jSi j .

H.K.’s work is supported by JSPS KAKENHI Grant
Number 26420122, Grant-in-Aid Scientific research (C) in
Japan Society for the Promotion of Science.
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