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ABSTRACT 
The energy spectrum contains information not only on 

the intensity but also on the length scale of the turbulent 
fluctuations. Its behavior has been studied in detail for 
homogeneous isotropic turbulence. On the other hand, 
one-point statistics such as the turbulent kinetic energy is 
treated for inhomogeneous turbulence. This is partly 
because the Fourier transform cannot be performed in 
inhomogeneous directions. In this work, instead of the 
energy spectrum in the wavenumber space, the energy 
density in the scale space is defined using the two-point 
velocity correlation. Its transport equation for 
inhomogeneous turbulence is derived. The energy transfer 
in the scale space is evaluated using the direct numerical 
simulation of homogeneous isotropic turbulence and 
turbulent channel flow. The energy density was compared 
with the energy spectrum in homogeneous isotropic 
turbulence. The energy transfer from the large to the small 
scales is observed in both isotropic and inhomogeneous 
turbulence. 

 
 

INTRODUCTION 
In order to better understand inhomogeneous 

turbulence, it must be useful to examine the energy 
transport not only in the physical space but also in the 
wavenumber space. Instead of the energy spectrum, the 
second-order velocity structure function 
〈( ′ui (x + r)− ′ui (x))2 〉  was treated as the scale energy and 
its transport in r  space was discussed (Hill, 2002; Marati 
et al., 2004; Davidson, 2004; Cimarelli et al., 2012). Its 
transport equation is a natural extension of the 
Kolmogorov equation for isotropic turbulence to the 
inhomogeneous case. However, its meaning in the limit of 
r →∞  for inhomogeneous turbulence is not clear because 
it corresponds to the sum of the energies at very distant 
two points as 〈 ′ui

2 (x + r)〉 + 〈 ′ui
2 (x)〉 . 

In this work, we propose another definition of the 
scale energy based on the two-point velocity correlation 
〈 ′ui (x) ′ui (x + r)〉 . In the limit of r → 0  it corresponds to 
the turbulent energy at a single point x  unlike the 

structure function. The velocity correlation can be 
considered the part of the turbulent energy whose scale is 
greater than r. We then define the energy density using the 
gradient of the two-point velocity correlation. Similar 
energy density in the scale space was proposed using the 
gradient of the structure function (Davidson, 2004). We 
expect that the energy density based on the two-point 
velocity correlation is suitable in discussing the energy 
transfer in the scale space. We derive the transport 
equation for the energy density in inhomogeneous 
turbulence. As a first step we examine the transport 
equation using the direct numerical simulation (DNS) data 
of homogeneous isotropic turbulence and turbulent 
channel flow. 
 
 
ENERGY DENSITY IN SCALE SPACE 

The transport equation for the energy spectrum E(k)  
for isotropic turbulence is given by 

 ∂
∂t

E(k) = T(k)− ε(k)+ F(k)  (1) 

 T(k) = 2πk2 dp dq∫∫ S(k,p,q)  (2) 

 ε(k) = 2νk2E(k)  (3) 
where F(k)  is the forcing term. The energy flux can be 
defined as 

 Π(k) = d ′k
k

∞

∫ T( ′k ),  T(k) = − ∂
∂k

Π(k)  (4) 

The energy transfer can be discussed partly because the 
energy spectrum is the energy density in the wavenumber 
space and satisfies 

 K = dk
0

∞

∫ E(k)  (5) 

The energy spectrum can also be considered the energy 
whose length scale is π / k . 

For inhomogeneous turbulence, it is not always 
possible to perform Fourier transform. Instead, we can 
treat the second-order structure function or the two-point 
velocity correlation Qii (x,r) = ′ui (x) ′ui (x + r)  to 
examine the energy transfer in the space of scale like the 
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Kármán-Howarth equation. The correlation Qii (x,r) / 2  
can be considered the energy whose scale is larger than r 
and it does not exactly represent the energy density in the 
scale space (r space). Instead of Qii (x,r) / 2 , we introduce 
the following quantity as the scale energy: 

 E(r) = − 1
2
∂
∂r

Qii (r) = − 1
2
∂
∂r
〈 ′ui (x) ′ui (x + r)〉  (6) 

Since this energy satisfies 

 K = dr
0

∞

∫ E(r)  (7) 

it represents the energy density in r space. This energy 
density can be examined even in inhomogeneous 
turbulence as 

 E(x,r) = − 1
2
∂
∂r

Qii (x, r,θ,φ)  (8) 

using the one-dimensional integral in the r direction with 
angles θ  and φ  fixed. 

 
 

TRANSPORT EQUATION FOR SCALE ENERGY 
The transport equation for E(x,r)  can be written as 

 

D
Dt

E(x,r)

=
1
2
∂
∂r
〈 ′uk (x) ′ui (x + r)〉 ∂

∂xk

Ui (x)+ ∂
∂xi

Uk (x)






 

 

+
1
2
∂
∂r

〈 ′uk (x + r) ′ui (x)〉 ∂
∂xk

(Ui (x + r)−Ui (x))










+ν
∂
∂r

∂
∂xk

′ui (x) ∂
∂xk

′ui (x + r)

+
∂
∂xk

1
2
∂
∂r
〈 ′uk (x) ′ui (x) ′ui (x + r)〉





+
∂
∂xi

1
2
∂
∂r
〈 ′p (x) ′ui (x + r)+ ′p (x + r) ′ui (x)〉





+ν
∂2

∂xk∂xk

E(x,r)

+
1
2
∂
∂r

∂
∂rk

[(Uk (x + r)−Uk (x))〈 ′ui (x) ′ui (x + r)〉]

 

 +
1
2
∂
∂r

∂
∂rk

〈( ′uk (x + r)− ′uk (x)) ′ui (x) ′ui (x + r)〉  (9) 

By integrating each term from r = 0  to ∞ , (9) is reduced 
to the transport equation for the turbulent energy K. On 
the right-hand side of (9) the first and second terms 
correspond to the energy production, the third term to the 
dissipation, and the fourth to sixth terms to the diffusion in 
the K equation. The remaining seventh and eighth terms 
represent the energy transfer in r space. 

For homogeneous isotropic turbulence the above 
transport equation is rewritten as 

 ∂
∂t

E(r) = TE (r)− εE (r)  (10) 

 TE (r) = 1
2
∂
∂r

∂
∂rk

〈( ′uk (x + r)− ′uk (x)) ′ui (x) ′ui (x + r)〉 (11) 

 εE (r) = −ν ∂
∂r

∂
∂xk

′ui (x) ∂
∂xk

′ui (x + r)  (12) 

If the external force exists, the following term FE (r)  is 
added to the right-hand side of (10). 

 
 

ANALYSIS USING ISOTROPIC TURBULENCE 
DNS 

The transport equation given by (9) represents the 
energy transfer in the physical and scale spaces. It must be 
interesting but very complicated to examine the energy 
transfer in both spaces in inhomogeneous turbulence. In 
this work, we first examine the energy transfer in the scale 
space for homogeneous isotropic turbulence. We carry out 
DNS of isotropic turbulence with and without external 
forcing using 5123 grid points. We will show results of 
two runs: decaying turbulence with initial spectrum 
E(k)∝ k4 exp(−2(k / kp )2 )  where kp = 3.5  (Case 1) and 
steady turbulence with external forcing at k = 2.5 − 4.5  
(Case 2). The Reynolds number Rλ  is 75 and 121 for 
Cases 1 and 2, respectively. 

Figure 1 and 2 show the energy spectra for Cases 1 
and 2, respectively. Since the Reynolds number is not very 
high, the inertial range where E(k)∝ k−5/3  is narrow and 
is located at �k : 20  for Case 1. Figure 3 shows the energy 
density E(r)  for Case 1. The energy corresponding to 
E(k)∝ k−5/3  is E(r)∝ r−1/3 ; its profile is also plotted in 
Fig. 3. Inertial range is located at �r : 0.1 . The 
Kolmogorov length scale is η = 0.0062  for this flow. To 
see the detailed profile at the small scale of r, we plot the 
spectrum in the semi-log scale in Fig. 4. The energy 
density is less than r−1/3  at r < 0.07  in Fig. 4 because of 
the small energy spectrum at the dissipation range shown 
in Fig. 1. 

Next we compare the energy transfer between the 
wavenumber and scale spaces. Figure 5 shows terms in 
the energy transport equation (1) in the wavenumber space 
for Case 1. The transfer term T(k)  is negative in the low 
wavenumber region and positive in the high wavenumber 
region, representing the forward energy cascade. At the 
dissipation range the transfer and dissipation terms are 
balanced to each other. Figure 6 shows the energy 
transport equation (1) for Case 2. In the low wavenumber 
region the large positive value of the forcing term F(k)  is 
balanced by the negative value of the transfer term T(k) . 
The profiles in the high wavenumber region are similar to 
those for Case 1 plotted in Fig. 5. 

Figure 7 shows terms in the energy transport equation 
(10) in the scale space as functions of r for Case 1. The 
small (large) scale region in Fig. 7 corresponds to the high 
(low) wavenumber region in Fig. 5. The transfer term 
TE (r)  is negative in the large scale region and positive in 
the small scale region, representing the energy transfer 
from the large scale to the small scale. Although the 
amplitude of terms is different between Figs. 5 and 7, the 
tendency of the energy transfer is the same. Figure 8 
shows terms in the energy transport equation (10) in the 
scale space for Case 2. Unlike Fig. 6, the profile of the 
forcing term FE (r)  is rather broad in Fig. 8. However, the 
behavior of the energy transfer is similar to that for Fig. 6. 
The profiles shown in Figs. 7 and 8 suggest that the 
energy density defined as (6) can be useful for examining 
the energy transfer in the scale space. 
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ANALYSIS USING CHANNEL FLOW DNS 
In order to assess whether the energy density is 

applied to inhomogeneous turbulence, we examine the 
transport equation using the DNS data of turbulent 
channel flow. The size of the computational domain is 
Lx × Ly × Lz = 2π × 2 × π . The number of grid points is 
Nx ×Ny ×Nz = 512 ×192 × 512 . The Reynolds number 
based on the friction velocity uτ  and the channel half 
width Ly / 2  is set to Reτ = 395 . Physical quantities are 
nondimensionalized using uτ  and Ly / 2 The periodic 
boundary conditions are used in the streamwise and 
spanwise directions and no-slip conditions are imposed at 
the wall ( y = ±1 ). Statistics are obtained by averaging 
over x-z plane and over a time period of 20. 

In this work we define the energy density for channel 
flow as  

 E(y, rx ) = − 1
2

∂
∂rx

Qii (y, rx )  (13) 

Its transport equation is given by 

 

∂
∂t

E(y, rx )

=
1
2

∂
∂rx

〈 ′uy (x) ′ux (x + rxex )+ ′ux (x) ′uy (x + rxex )〉〉
∂Ux

∂y

+ν
∂
∂r

∂
∂xk

′ui (x) ∂
∂xk

′ui (x + rxex )

+
∂
∂y

1
2

∂
∂rx

〈 ′uy (x) ′ui (x) ′ui (x + rxex )〉






+
∂
∂y

1
2
∂
∂r
〈 ′p (x) ′uy (x + rxex )+ ′p (x + rxex ) ′uy (x)〉





+ν
∂2

∂y2 E(y, rx )

 

 + 1
2

∂
∂rx

∂
∂rk

〈( ′uk (x + rxex )− ′uk (x)) ′ui (x) ′ui (x + rxex )〉 (14) 

where ex  is the unit vector in the x direction. The right-
hand side consists of the production, dissipation, turbulent 
diffusion, pressure diffusion, viscous diffusion, and 
transfer terms. 

Figure 9 shows the profile of the energy density as a 
function of rx  for y = −0.81 ( y+ = 76 ) in the log layer. 
The prolife is similar to that for homogeneous isotropic 
turbulence shown in Fig. 3. Figure 10 shows the profiles 
of terms in the transport equation for the energy density 
given by (14) as functions of rx  for y = −0.81 ( y+ = 76 ). 
The production term shows positive values at relatively 
broad region. The energy transfer term is negative at large 
scales and positive at small scales, representing the energy 
flux from the large to the small scales. The dissipation 
term is negative at small scales and is balanced by the 
transfer term. In Figs. 8 and 10, the behavior of the 
transfer and dissipation terms is very similar between the 
homogeneous isotropic turbulence and turbulent channel 
flow although the region of the forcing and production 
terms are different. 

 
 

CONCLUSIONS 
The energy density in the scale space was introduced 

on the basis of the two-point velocity correlations. The 
transport equation for the energy density was derived for 
inhomogeneous turbulence. The energy transfer in the 
scale space was evaluated using the DNS of homogeneous 
isotropic turbulence and turbulent channel flow. The 
energy transfer from the large to the small scales is 
observed in both flows. It was shown that the energy 
density is useful for examining the energy transfer in the 
scale space. 
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Figure 1. Profile of energy spectrum E(k)  for Case 1. 

 

 
Figure 2. Profile of energy spectrum E(k)  for Case 2. 
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Figure 3. Profile of energy density E(r)  for Case 1. 

 

 
Figure 4. Profile of energy density E(r)  for Case 1. 

 (semi-log scale) 
 

 
Figure 5. Profiles of transport equation (1) for E(k)  

for Case 1. 
 

 
Figure 6. Profiles of transport equation (1) for E(k)  

for Case 2. 

 
Figure 7. Profiles of transport equation (10) for E(r)  

for Case 1. 

 
Figure 8. Profiles of transport equation (10) for E(r)  

for Case 2. 
 

 
Figure 9. Profile of energy density E(y, rx )  as a function 

of rx  for y+ = 76  for channel flow. 
 

 
Figure 10. Profile of transport equation (14) as a function 

of rx  for y+ = 76  for channel flow. 
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