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ABSTRACT
We propose explicit reinitialization and extending al-

gorithms, which are critical for the level-set based interface-
tracking methodology. By introducing Wendland function,
the level-set field is reinitialized with a one-step ”forward
tracing” algorithm. Furthermore, the fluid states are extrap-
olated or extended across the interface through a one-step
”backward tracing” algorithm. Both algorithms, which can
be regarded as variations of the ray-tracing technique, avoid
multiple boundary information exchanges that are neces-
sary for previous iterative reinitialization and extending ap-
proaches within multi-block framework. This property is
crucial for efficient large-scale simulations on distributed-
memory clusters. The new algorithms, in combining with
the multi-resolution conservative sharp-interface method,
have been validated by an extensive benchmark study.
Demonstrated accuracy and robustness suggest that the pro-
posed algorithms offer a highly efficient alternative to pre-
vious reinitialization and extending approaches in the level-
set methodology.

Introduction
Reinitialization serves to recover the signed-distance

property of a transported level-set function. Sussman
et al. (1994) develops Eikonal equation for this purpose.
The signed-distance property is approximately satisfied in
terms of an iterative procedure. Generally the Reini-
tialization equation is solved on Eulerian grid leading
to many boundary-information exchanges within a multi-
block framework and therefore inevitably affects parallel ef-
ficiency. Sethian (1996) proposes the ”Fast Marching Meth-
ods” for efficient solution of the static Hamilton-Jacobi e-
quations. However, ”Fast Marching Methods” implies da-
ta dependencies when the procedure loops from ”close”

to ”far” cells. Such a sequential order is inefficient on
distributed-memory architecture Wright et al. (1996). Adal-
steinsson & Sethian (1995) present the so called ”Narrow
band” technique which greatly decreases the computation-
al cost while maintaining accuracy. As all the mentioned
methods involve the solution of a transport equation, for
algorithms based on them, it is hard to obtain high effi-
ciency on distributed-memory architecture. Fortmeier &
Bcker (2011) recently develops a parallel reinitialization
method on distributed unstructured tetrahedral grids. The
technique still has global data dependency when searching
for the minimum distance function. Cho et al. (2011) pro-
poses a direct reinitialization approach for incompressible
two-phase flow. The calculations involve the determination
of all end points of interface segments and distances from
the target cells to these end points. The direct computation
of minimum distance function becomes extremely complex
when this approach is extended to three dimensions.

When the computational domain is separated by the
interface represented by zero level-set function, unknown
ghost quantities on either side of the interface should be
extrapolated from the real fluid properties. This extrapo-
lation plays pivotal role for different ghost-fluid methods.
Chang et al. (2013) intends to avoid the definition of such
ghost cell values by introducing a reconstruction procedure
near the interface. This method is prohibitively difficult to
extend to three dimensions and may suffer from numerical
instabilities. Fedkiw et al. (1999a) defines them from a con-
stant extrapolation by solving a transport equation. Aslam
(2003) further formulates this method to achieve higher or-
der of polynomial extrapolation. The sharp interface model
Hu et al. (2006) also exploits constant extrapolation. Ghost
cell quantities provide the interpolation stencil for recon-
struction near interface and allow for solving the interface
condition. However, the transport equation must be solved

1

June 30 - July 3, 2015 Melbourne, Australia

9
P-16



iteratively which implies similar drawbacks as reinitializa-
tion procedure with respect to parallel computation. Ac-
cording to our knowledge, the resolution of this problem is
yet open.

In this paper, we propose an approach which belongs to
the general type of semi-Lagrangian methods to complete
the reinitialization and extending procedures in one step.
The methods involve mainly simple geometrical algebra-
ic calculations but recovers the solution accurately. Reini-
tialization is achieved by a ”forward tracing” method. Ex-
tending of primitive variables to the other side of the in-
terface is accomplished by a ”backward tracing” method.
These methods have three main advantages: (i) no itera-
tions are needed; (ii) all the data operations are local on
a computational-block packet including boundary ghost-
cell information; (iii) extension to three-dimensions is s-
traightforward and fairly simple. These properties eliminate
the drawbacks of previous methods and enable large scale
simulations on a distributed-memory architecture with high
parallel efficiency.

Basic numerical methods
Provided that the fluid is inviscid and compressible ne-

glecting the viscous, gravity and surface tension effects, the
hyperbolic systems of conservation laws for single phase
can be written as follows

∂ U
∂ t

+∇ ·F = 0, (1)

where U = [ρ ,ρu,ρv,E]T represents the density of con-
servative variables of mass, momentum and total energy,
E = ρe+ 1

2 ρ(u2 + v2), F denotes the physical flux function
of U. This set of equations is closed by equations of state
(EOS) appropriate to the particular type of fluid. Here, we
consider the ideal-gas equation of state and the Tait’s equa-
tion Fedkiw et al. (1999a) for gas and water phase respec-
tively.

Considering two-phase fluid simulation, the computa-
tional domain Ω is separated by an interface Γ into Ω1 and
Ω2. Following the sharp interface method proposed by Hu
et al. Hu et al. (2006), each phase can be discretized indi-
vidually. Discrete conservation is achieved by careful treat-
ment of the cut cell.

In order to compute the volume fractions and cell-face
apertures, we first define the interface. The level-set tech-
nique is adopted due to its sharp inherent representation and
implicit handling of interface topology. A signed-distance
function ϕ is established and the ϕ = 0 contour represents
the interface Γ

Γ = {(x,y)|ϕ(x,y, t) = 0} . (2)

The entire domain is divided into three parts: ϕ > 0 rep-
resents the positive phase, ϕ < 0 represents the negative
phase and the interface Γ. Furthermore, interface charac-
teristic parameters such as interface normal direction N and
curvature κ can be calculated directly by finite-difference
approximations.

The time evolution of ϕ corresponding to the adection
of interface Γ is described by

ϕt +v ·∇ϕ = 0. (3)

This equation can be solved on the same Cartesian mesh as
fluid evolution and by similar high order discretization such
as fifth-order WENO scheme. The transport velocity v in E-
q. (3) can be chosen in many different ways. As mentioned
in Hu & Khoo (2004), it can be obtained from the inter-
action of real and ghost fluid through solving a Riemann
problem. This method avoids spurious pressure oscillations
and advects the level-set field smoothly and stably.

The level-set ϕ field evolution by Eq. (3) may lose the
signed-distance function property. In order to recover this
property, a reinitialization equation Sussman et al. (1994)

ϕτ + sgn(ϕ)(|∇ϕ |−1) = 0, (4)

where τ represents pseudo time and sgn(ϕ) represents sign
function, is solved to steady state after certain physical time
intervals. In current implementation, this procedure is per-
formed at each time step right after completing all Runge-
kutta substeps. The stable discretization of Eq. (4) is not
straightforward.

In sharp-interface methods based on level-set tech-
nique Fedkiw et al. (1999b)Hu et al. (2006), the fluid state
for each fluid phase is extrapolated to the other side of in-
terface by solving the extending equation

qτ ±N ·∇q = 0 (5)

within the narrow band. Here, +N is used to extend quan-
tities from sub-domain of ϕ < 0 to sub-domain of ϕ > 0;
while −N is utilized along the opposite direction.

Numerical results
Interface deformed by a single vortex

The two-dimensional version of this case is taken from
Bell et al. Bell et al. (1989) and has ever been widely used to
validate interface advection and reinitialization algorithms
So et al. (2011).

The computational domain is [0, 1]×[0, 1]. A circular
interface with radius 0.15 is initialized at (0.5, 0.75). The
interface is stretched by the vortex velocity field and devel-
ops into long filaments around the vortex center. With ap-
plication of the reversed velocity field since t = 3, it should
recover to the original disk shape at t = 6. We run this case
at two resolutions: 320×320 and 640×640. As shown in
Fig.1, the present reinitialization method leads to slightly
better resolution of the small structure and less mass loss
than the standard iterative procedures used in Han et al.
(2014).

In the three-dimensional version of the case LeV-
eque (1996)Hieber & Koumoutsakos (2005)Enright et al.
(2005)Chenadec & Pitsch (2013), the computational do-
main is [0, 1]×[0, 1]×[0, 1]. A sphere with radius 0.15
is initially placed at (0.35, 0.35, 0.35). It is deformed by the
velocity field above and develops into a thin film at t = 1.
After that the reversed velocity field is imposed to check the
recovery of the initial sphere at t = 2. A uniform mesh with
resolution 320×320×320 is used. As shown in Fig. 2, both
the present algorithm and the iterative method resolve the
thin interface quite well. Again the present method reveals
a slightly delayed rupture and slightly better resolution of
small structures.
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Figure 1. Interface shape: 320×320 (left) and 640×640 (right)

Underwater explosion

Here, we simulate a two-dimensional problem in which
the interface remains smooth. This case has been investi-
gated in Hu et al. (2009)Han et al. (2014). The simulation
setup is the same as in Hu et al. (2009)

Reference density and pressure are 1000kg/m3 and
1atmosphere respectively. The computational domain is [0,
4]×[0, 4]. There are two gas water interfaces: air-water
interface located at y = 1.5 and a circular gas bubble im-
mersed in the water at (2.0,1.2) with the radius 0.12. We set
maximum refinement level of 6 for the multi-resolution pro-
cedure corresponding to an effective resolution 1024×1024.
Fig. 3 shows the Schlieren-type images of density gradien-
t |∇ρ | from 0.2ms to 2.0ms. It is observed that the result
from present methods is almost the same as in Han et al.
(2014) (their Fig. 24). As indicated in Fig. 4 which shows
a contour line of the level-set field at t = 2.0ms, the present
reinitialization method has reproduced very smooth level-
set field.

Shock and double water-columns interaction
In this case, a Mach 6 shock hits a double water-

columns in gas. This case exhibits complex interface evo-
lution and strong shock water-column interaction. It has
been investigated in Hu et al. (2009) for method validation.
Here, we adopt the exact setting as Han et al. (2014) for the
convenience of comparisons.

Reference density and pressure are 1kg/m3 and
1atmosphere respectively. The computational domain is [0,
2.8]×[0, 2.8]. Two water-columns: one located at (1.5, 1.0)
with radius 0.25 and the other located at (0.8, 1.4) with ra-
dius 0.32 are settled in pre-shocked air. The effective reso-
lution is 2048×2048 at the finest level. Fig. 5 and Fig. 6
show the Schlieren-type images of density gradient |∇ρ|
and the interface shape evolution from simulation time 3 µs
to 24 µs . It can be observed that the overall results agree
very well with that of Han et al. (2014) (their Fig. 23). Spe-
cially, at the early time stage, the fluid details are identical
to that in Han et al. (2014) as the interface is considerably
smooth. On the other hand, at late time stage, while the s-
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(a) by solving transport equation

(b) by the present method

Figure 2. Interface shape at t = 0.00, 0.20, 0.40, 0.53, 0.67, 0.80, 0.93, 1.00, 1.07, 1.33, 1.60, 2.00

mall interface structures obtained by the present method are
different from those in Han et al. (2014) due to the inviscid
model, the large interface structures are however in quite
good agreement. Even the ”Karman Vortex Street” at 24µ
is resolved indicating our numerical results are physically
reasonable. The density values of ghost cells for positive
phase at 9 µs are illustrated in Fig. 7. Our new extending
procedure results in smooth distributions of primitive vari-
ables and achieves the intended constant extrapolation.
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Figure 3. Underwater explosion: schlieren-type images of density gradient |∇ρ |.
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Figure 4. Details of level-set field at 2.0ms: interface position (left figure) and contour lines of narrow band near the interface
(right figure).
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Figure 5. Shock and double water-columns interaction: schlieren-type images of density gradient |∇ρ | from simulation time
3 µs to 24 µs .

Figure 6. Shock and double water-columns interaction: interface shape evolution from simulation time 3 µs to 24 µs .

Figure 7. Density values of ghost cells for positive phase at 9µs. The blue region is left to the initialized values as the cells
are more than four-cell away from the interface, thus not critical for the positive phase. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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