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Introduction
The assumption ofisotropic turbulence is a quite rig-

orous requirement in most of the practical applications. By
contrast, the concept of “local isotropy”, which was intro-
duced by Kolmogorov (1941), only assumes that the small-
scale turbulence is isotropic and is more realistic. Large-
eddy simulation (LES) is one of the applications of this
assumption, aslocal isotropy is the basis of most subgrid
models (c.f. Smagorinsky (1963); Métais & Lesieur (1992);
Cui et al. (2004); Fanget al. (2009)). In these models the
small scales,i.e. the subgrid scales (SGS), are assumed
to be local isotropic, so that the homogeneous isotropic
theories can be applied. However, limitations have been
found in the simulation of shear turbulence, so some re-
cent anisotropic models have to avoid assuming thelocal
isotropy (c.f. Lévêqueet al. (2007); Cuiet al. (2007)). Till
now, the effect oflocal anisotropy in the existing SGS mod-
els has not been carefully studied. In order to better develop
these SGS models, it is necessary to investigate the proper-
ties oflocal anisotropy affected by the mean shear, which is
one of the simplest anisotropic conditions.

There are already many spectral researches on thelo-
cal anisotropy in shear turbulence, which pointed out that
the mean shear causes a turning effect in spectral space
(c.f. Phillips (1969); Saddoughi & Veeravalli (1994); He
& Zhang (2006)). However these spectral conclusions are
difficult to be used in practical LES, while a study in phys-
ical space is required. In physical space, we can define the
structure functions which represent thelocal properties as
following:

Di1i2...im (rrr) =
〈
δu′im (rrr)δu′im (rrr)...δu′im(rrr)

〉
, (1)

in which uuu is the velocity,〈〉 means taking ensemble aver-
age,•′ is the fluctuating part, andδuuu(rrr) = uuu(xxx+rrr)−uuu(xxx) is
the velocity increment at two-point distancerrr. In particular

we are intrested in the second-order cross structure function

D12(reee1) =
〈
δu′1(reee1)δu′2(reee1)

〉
, (2)

wherex1 is the streamwise direction andx2 is the normal
direction, i.e. the mean velocity is〈uuu〉 = γx2eee1 with γ
the mean shear. Similar to the spectral correlation func-
tion R̂12 in spectral space, this term is the most impor-
tant cross term in physical space which represents thelo-
cal anisotropy. From the assmption oflocal isotropy there
should beD12(reee1) ≡ 0, but the experiments of Kurien &
Sreenivasan (2000) showed non-zero results. The measure-
ments were done in an atmospheric boundary layer, show-
ing that the cross termD12(reee1) = 0 satisfying ther2 scal-
ing in dissipative range andr1.12 (or r1.22) scaling in inertial
range. However till now, there is no theoretical explana-
tion for these scalings. Existed works usually introduce the
group theory and expand the structure functions in spherical
harmonics (for example Casciolaet al. (2007)) but did not
provide any analytical scaling.

This scaling is also important in the LES modeling of
shear turbulence. From Cuiet al. (2007) D12(reee1) acts
as a source term of the filtered Kolmogorov equation, and
explicitly affects the subgrid viscosity. One of our SGS
models Fanget al. (2009) also showed thatD12(reee1) could
be directly related to subgrid stress. Therefore, in order
to better perform the SGS models in shear turbulence, we
should investigate the behavoir of the cross structure func-
tion D12(reee1), especially in inertial range where LES filters
always locate.

In this letter, we extend our previous works, for exam-
ple Cui et al. (2007); Fanget al. (2010, 2009, 2014); Yao
et al. (2014), to homogeneous shear turbulence, and obtain
a scaling law of the cross structure functionD12(reee1) based
on some additional assumptions. For simplification, the ef-
fect of filter has not been considered in this letter, however
it will be further investigated by using the similar method as
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in Ma et al. (2011) and Fanget al. (2014). The scaling ex-
ponent shows extremely good agreement with experimental
results and encourages further researches.

In homogeneous shear turbulence, we can decompose
the velocity into mean and fluctuating parts:

ui = 〈ui〉+u′i = γx2δi1+u′i, (3)

and the governing equation for the fluctuating part reads

∂u′i
∂ t

+ γx2
∂u′i
∂x1

+u′k
∂u′i
∂xk

=− 1
ρ

∂ p′

∂xi
+ν

∂ 2u′i
∂xk∂xk

. (4)

Following the same progress as Cuiet al. (2007), we can
write Eq. (4) at another pointxxx∗ = xxx+ rrr, and obtain the
governing equation for velocity incrementδuuu′. Multiplying
the equations ofδu′i andδu′j and taking ensemble average,
we have the following result:

∂Di j(rrr)

∂ t
+

∂Di jk(rrr)

∂ rk
+ γr2

∂Di j(rrr)

∂ r1

+ γ
(
δi1D j2(rrr)+δ j1Di2(rrr)

)

=
2
ρ
〈δ p′(rrr)δS′i j(rrr)〉+2ν

∂ 2Di j(rrr)

∂ rk∂ rk
−4ν

〈
∂u′i
∂xk

∂u′j
∂xk

〉
,

(5)

whereS′i j =
1
2

(
∂ u′i
∂ x j

+
∂ u′j
∂ xi

)
is fluctuating shear rate.

In order to simplify the investigation, we have the fol-
lowing assumptions:

1.
∂Di j(rrr)

∂ t
= 0. (6)

This assumes the steadiness of the small scale turbu-
lence, as many existed works did, for example see Cui
et al. (2004); Fanget al. (2009); Cuiet al. (2007).

2.
Di jr(rrr) = SDi j(r)

3/2, (7)

where the subscriptr means the direction ofrrr. S is as-
sumed as constant skewness which is always negative,
thus

∂Di jk(rrr)

∂ rk
= S

dDi j(r)3/2

dr
+

2SDi j(r)3/2

r
. (8)

This assumption of closure is similar to the Extended
Scale Similarity (ESS) theory (Benziet al. (1995)), and
has been shown to be reasonable in both dissipative and
inertial ranges (see Fanget al. (2010)). Althouth not
correct in the transition range, it does not affect the
investigation of this letter since we only focus on the
scaling laws in the dissipative range and inertial range.

3.
T12 =

2
ρ
〈δ p′(reee1)δS′12(reee1)〉= 0. (9)

This correlation between the increment of pressure and
the increment of fluctuating shear rate has been studied

by many works. Hill (1997) obtainedTi j = 0 in the case
of local isotropy. Later, Alvelius & Johansson (2000)
showed thatTi j is almost zero in the ranger ≪ L with
L energy-containing scale, from a numerical simula-
tion of anisotropic turbulence. In this letter we do not
consider the scaling in energy-containing range, thus
this assumption could be reasonable.

From these assumptions, we write the governing equa-
tion for D12(reee1) from Eq. (5):

S
dD12(reee1)

3/2

dr
+

2SD12(reee1)
3/2

r
+ γD22(reee1)

=
2ν
r2

d
dr

(
r2 dD12(reee1)

dr

)
−4ε12,

(10)

where ε12 = ν
〈

∂ u′1
∂ xk

∂ u′2
∂ xk

〉
. From the experiment of

Saddoughi & Veeravalli (1994) we have approximately
D22(reee1) = Dnn(r), whereDnn is the second-order trans-
verse structure function in homogeneous isotropic turbu-
lence. The terms in the right-hand side of Eq. 10 are re-
lated to the molecular viscosity. We can then define a non-
dimensional parameterβ = ν

γη2 to denote the proportion
between the viscous terms and the shear term, withη the
Kolmogorov scale. In the following parts, we first introduce
the analytical solution of negligible viscous terms compar-
ing with the shear effect,i.e. β = 0; then numerically con-
sider the effect of viscous terms whenβ 6= 0.

Neglecting the viscous terms under ex-
tremely strong shear

When the viscous effect is negligible when comparing
with the shear effect, Eq. (10) becomes:

S
dD12(reee1)

3/2

dr
+

2SD12(reee1)
3/2

r
+ γDnn(r) = 0. (11)

The solution of D12(reee1) is (note the initial condition
D12(000) = 0)

D12(reee1) =

(
−γ

∫ r
0 r2Dnn (r)dr

Sr2

)2/3

. (12)

In dissipative rangeDnn(r) ∝ r2, and we obtain

D12(reee1) ∝ γ2/3r2. (13)

In inertial rangeDnn(r) ∝ r2/3, thus

D12(reee1) ∝ γ2/3r10/9 ≈ γ2/3r1.111. (14)

If we consider the anomalous scaling thatDnn(r) ∝ r0.69

(c.f. She & Leveque (1994)) in inertial range instead, this
scaling changes to aboutr1.127. For simplification, in this
letter we do not consider this anomalous effect. From the
experiments of Kurien & Sreenivasan (2000), ther2 law in
dissipative range is well satisfied. In inertial range, it was
found thatD12(reee1) ∝ r1.22 at 0.54m (the distance between
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the measure point and the ground) andD12(reee1) ∝ r1.12 at
0.27m. They are both in agreement with Eq. (14). Note that
we have assumed strong shear effect comparing with vis-
cous effect, while the shear effect at 0.27m is more strong
than that at 0.54m, and the resultr1.12 is much more close to
our theoretical valuer1.111. This perfect agreement proves
the correctness of our theoretical approach. In addition,
the denominator 9 of the scaling exponent 10/9 might be
related with the dimensional analysis of Bos & Bertoglio
(2007) in spectral space, where a scaling ofk−23/9 was
found for a cross term between velocity and passive scalar.

Considering the viscous effect under moder-
ate shear

It is difficult to obtain an analytical solution for Eq.
(10) whenβ 6= 0. Instead, it is numerically solved in this
section. As explained in Fanget al. (2010), Batchelor’s for-
mula could be appropriate for modelingDnn(r) (Batchelor
(1951))

Dll(r) =
2u2

0(
r
η )

2/3

[1+(Cb
η
r )

2]2/3
,Dnn(r) = Dll(r)+

1
2

dDll(r)
dr

,

(15)
where Dll(r) is the longitude structure function,u0 =
(νε)1/4 is the Kolmogorov velocity, andCb = 303/4 is a
constant. The skewness of Eq. (7) is fixed asS =−0.38 as
was proposed in Fanget al. (2010).

We then calculate Eq. (10) numerically by giving dif-
ferent non-dimensional valueβ . In order to better analyze
the results, the scaling exponent of a structure function isin-

troduced asn(r) = dD(r)
dr

r
D(r) , whereD(r) can be any struc-

ture function. The corresponding results are shown in Fig.
1. Whenβ = 0, the negligible viscous effect leads to the
r2 scaling in dissipative range andr10/9 scaling in inertial
range, as was explained in the above parts. Ther2 scal-
ing in dissipative range is because of by Taylor expansion,
so it can not be affected by differentβ . Besides, we find
that the increasingβ does not change the asymptotic value
10/9 in inertial range. In Fig. 1 it is shown thatβ < 1
causes an asymptotic scalingn → 10/9 whenr/η > 100,
besides we also observedn→ 10/9 at very larger for larger
β (they are shown in the subfigure of Fig. 1). Whenβ 6= 0,
the small-scale (r/η < 10) changes rapidly, which means
that the viscous terms mainly affect the small-scale scaling.
Whenr is small, strong viscous effect causes the classical
scaling law which varies from 2 to 2/3, like the lines of
β = 100 and 1000 in Fig. 1; whenr is large enough, all the
scaling exponents ofD12(reee1) tend to the theoretical value
10/9. A conclusion can be therefore made that, in homo-
geneous shear turbulence, the viscous terms determine the
small-scale scaling and the shear term determines the large-
scale scaling. This conclusion could be reasonable since
the dissipation is always a small-scale phenomenon and the
mean shear could be regarded as a large-scale flow struc-
ture. Note that this “large-scale” does not mean the energy-
containing scale, since it is still in inertial range where LES
filters always locate. Therefore, the shear effect denotes
thelocal anisotropy and should be considered in anisotropic
LES modeling.

Conclusion
In this letter we are interested in the theoretical ex-

planation of the scaling of the second-order cross structure

function. An approach is applied by simplifying the gov-
erning equation of second-order structure function. A non-
dimensional parameterβ is defined to denote the proportion
between the viscous and shear effects. Whenβ = 0, the vis-
cous terms are negligible, and ar10/9 scaling is obtained in
inertial range, showing extremely good agreement with ex-
isting experimental results; whenβ 6= 0, the viscous effect
is studied numerically, showing that the viscous terms deter-
mine the small-scale scaling and the shear term determines
the large-scale scaling. The understanding of this cross
structure function shows the property oflocal anisotropy
in homogeneous shear turbulence, and might help us to im-
prove anisotropic SGS models. The assumptions (6), (7)
and (9) are expected be verified from DNS shear flow and
experiments to better support this theory in the future.
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Métais, O. & Lesieur, M. 1992 Spectral large-eddy simula-
tion of isotropic and stably stratified turbulence.Joural
of Fluid Mechanics 239, 157–194.

Phillips, O. M. 1969 Shear-flow turbulence.Annual Review
of Fluid Mechanics 1, 245–264.

Saddoughi, S.G. & Veeravalli, S.V. 1994 Local isotropy in
turbulent boundary layers at high reynolds number.Jour-
nal of Fluid Mechanics 268, 333–372.

She, Z. S. & Leveque, E. 1994 Universal scaling law in fully
developed turbulence.Physics Review Letters 72, 336.

Smagorinsky, J. 1963 General circulation experiments with
primitive equation.Monthly Weather Review 91, 99.

Yao, S.Y., Fang, L., Lv, J.M., Wu, J.Z. & Lu, L.P. 2014
Multiscale three-point velocity increment correlation in

turbulent flows.Physics Letters A 378 (11-12), 886–891.

r/η

n

10-1 100 101 1020

0.5

1

1.5

2

β=0
β=0.1
β=1
β=10
β=100
β=1000

10/9

2/3

103 104 105 106 1070.6

0.8

1

1.2

Figure 1. The scaling exponent ofD12(reee1), with different
non-dimensional parameterβ .

.

4


