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ABSTRACT
To understand the multiscale coherent structures of

the turbulent velocity fields, a scale-decomposition method
based on a second generation wavelets using lifting scheme
is promoted. It is used to analyse the experimental time-
series velocity of a homogeneous turbulence atReλ =
720, velocity of a zero-pressure-gradient boundary layer at
Reθ = 7705 and velocity signals from direct numerical sim-
ulation (DNS) of a turbulent channel flow atReτ = 206.
Each scale velocity component contributes to the total spe-
ctra at its corresponding frequency range.It is found that at
the largest scale, the scale velocities at different wall dis-
tance have very large correlation coefficients at different
time delays. Under the similarity assumption, a reconstruc-
tion model is promoted to rebuild fine scale velocity for ho-
mogeneous turbulence by using its neighbour larger scale
velocities. The reconstructed scale velocity component has
correct energy spectra compared with that of experimental
one.

INTRODUCTION
Turbulent flow consists of self-similar structures with a

wide range of length scales. Multi-scale decomposition has
gained increasing interest in the turbulence research, and
has been proven to be useful for understanding the evolu-
tion of eddies and the interaction between turbulent flow
structures at different scales.

The classical Fourier spectrum gives the energy distri-
bution of a signal in a frequency domain and is evaluated
over the entire time interval, which losses the localization
of transient features and spatial information (Domaradzki
& Liu (1993)) and is limited to periodic boundary problem.
HuangY.X. & F.G. (2007) proposed an Empirical Mode
Decomposition (EMD) method, and introduced a concep-
t of Hilbert spectrum. However, EMD cannot correctly
represent the instantaneous frequency of an intrinsic mode
function. And the Hilbert spectrum has no obvious phys-
ical meaning. Meneveau (1991) used continuous wavelets
transformation to analyse turbulent flow. In recent years,
wavelets have found increasing use for scale decomposi-
tion investigation. Classical construction of orthogonalor
biorthogonal wavelets on the infinite real line is based on
the Fourier transform (FT) and is carried out in the frequen-
cy domain. This introduces considerable constraints on the
implementation of the wavelets for practical flow analysis.

The second generation wavelets constructed by using
lifting scheme (Sweldens (1996)) does not resort to the FT,
and hence, the derived basis functions are not necessari-
ly translations and dilations of a mother function, which
makes it suitable for problems defined in bounded domains,
analysis of data on curves or surfaces, weighted approxima-
tions, and irregular grids. Additional important benefits are
the fast implementation, which is fully in-place calculation,
and perfect reconstruction. Therefore, in this investigation,
based on the second generation wavelets, a scale decompo-
sition method achieve a hierarchical decomposition of the
turbulent velocity field in the scale space. Under the scale
similarity assumption, a fine scale reconstruction model is
proposed.

SCALE DECOMPOSITION METHOD AND RE-
CONSTRUCTION MODEL
Scale Decomposition Method

The lifting scheme is independent of FT and has three
stages: split, predict, and update. An original signalλ0,k
can be splitted into two subsets:

(λ0,2k,λ0,2k+1) = split(λ0,k) (1)

and letλ−1,k = λ0,2k. The wavelet coefficientsγ−1,k are
obtained in the prediction step as:

γ−1,k = λ0,2k+1−P(λ0,2k). (2)

where P is a prediction operator. Finally, scaling coeffi-
cientsλ−1,k are obtained in the update step as:

λ−1,k = λ−1,k +U(γ−1,k). (3)

where U is an update operator. Then repeat this process to
get wavelet and scaling coefficients at large spatial scales.
If n levels of scale are decomposed and denote the forward
second generation wavelets transformation as ‘SWT‘, then
the n times forward transformation can be represented as:

(λ−n,k,γ− j,k) = SWT n(λ0,k),( j = 1· · ·n,k ∈ Z). (4)
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The scale decomposition is realized by a layer inverse trans-
formation. The low frequency residuals−n having the same
signal length in physical space is calculated from inverse
transformation of scaling coefficientsλ−n,k:

s−n = SW T−n(λ−n,k). (5)

And a high frequency detaild− j at level j is obtained by in-
verse transformation of corresponding wavelets coefficients
γ− j,k:

d− j = SWT−n(γ− j,k), j = 1· · ·n. (6)

Finally the original signal can be perfectly reconstructedas:

λ0,2k = s−n +
n

∑
j=1

d− j = SW T−n(λ−n,k,γ− j,k), j = 1· · ·n.

(7)

Reconstruction Model
Based on the view of energy cascade and scale similari-

ty hypothesis for homogeneous turbulence, the finer wavelet
coefficientsλ− j,k at level j can be expected as a function of
all the coefficients levels as:

γ− j,k = f (λ−n,k,γ− j−1,k · · ·γ−n,k), (8)

where f is an unknown function. In the consideration of
localization of fine scales, it is supposed that the predicted
wavelet coefficientsγ p

− j,k by a model are just linear func-
tion of its neighbour coarse level coefficientsγ− j−1,k and
γ− j−2,k. Therefore, a wavelet coefficient at timetl can be
predicted by using its two neighboursγ− j−1,tm andγ− j−2,tn
in a time range feomtm to tn as:

γ p
− j,tl

=
tn − tl
tn − tm

∗ γ− j−1,tm +
tl − tm
tn − tm

∗ γ− j−2,tn . (9)

where supposetm < tl < tn. Then the predicted high fre-
quency detaildp

− j can be obtained by inverse transformation

of γ p
− j,k as:

dp
− j = SWT−n(γ p

− j,k), j = 1· · ·n. (10)

Using this model, a higher frequency detailγ p
0,2k can be pre-

dicted and reconstructed from two highest frequency details
γ p
−1,k andγ p

−2,k. Therefore, a new turbulent velocity signal

λ p
1,2k usingγ p

0,k andλ0,k can be built . Asλ p
1,2k is two times

of length ofλ0,k, hence, the length ofλ0,k, γ−1,k andγ p
−2,k

should be doubled. Then the finest detailγ p
0,2k is predicted

as:

γ p
0,2k = f (γ−1,k,γ−2,k). (11)

Finally, the new fine turbulent velocity signal can be ob-
tained as:

λ p
1,2k = SW T−1(γ p

0,2k,λ
p
0,2k). (12)

Figure 1. Flow chart of scale decomposition method and
reconstruction.

This procedure is outlined in Figure 1, which can be easi-
ly extended to two dimension. The only required input is
an original signal. All the high frequency detaild− j, low
frequency residuals−n, predicted high frequency detaild− j
and new fine turbulent velocity signal can be obtained at a
time.

RESULTS AND DISCUSSIONS
Homogeneous turbulence

An original data is obtained from the measurements
of isentropic grid turbulence at Taylor Reynolds number
Reλ = 720(Kanget al. (2003)).The velocity signal is de-
composed into n=9 levels, that is, a series of high frequency
detailsd− j( j = 1· · ·9) and a low frequency residuals−9, as
shown in Figure 2. Each high frequency detail represents
a series of velocity at certain scale, which is named scale
velocity. The low frequency residual represents the largest
scale velocity, which represents the trend of the original sig-
nal as shown in Figure 3. The correlation coefficients be-
tween original velocity signals and scale velocity is shown
in Table 1. It is obvious that the correlation coefficients of
larger scale velocity are much larger than those of smaller
scale velocity. To know the kinetic energy characteristic-
s, FT is done for each scale velocity and original velocity,
as shown in Figure 4. It can be found that each scale ve-
locity component contributes to the total spectra at its cor-
responding frequency range. As the scale becomes smaller,
the corresponding frequencies become larger and the energy
spectra become smaller.To approach the−5/3 Kolmogorov
spectrum, one by one Fourier spectrum ofd− j( j = 1· · ·9)
has been adding together to reach low frequency in the iner-
tial range as shown in Figure 5. It can be seen that the velo-
city signal is decomposed into three terms: the small scales
corresponding to a dissipation range, the large scales corre-
sponding to the energy carrying structures and the moderate
scales corresponding to a inertial subrange.

Zero-pressure-gradient Boundary Layer
An original data of a zero-pressure-gradient bound-

ary layer is obtained from the instantaneous velocity field-
s in a streamwise-wall-normal plane at Reynolds number
Reθ = 7705 (Adrian & Hart (1998)). It contains the stream-
wise velocity component (u) and the normal turbulent velo-
city component (v). The fluctuation velocity signals u and
v (mean-velocity subtracted) are decomposed into 5 lev-
els. The vorticity can be obtained from the scale velocity
field which is the combination of the scale velocity compo-
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Table 1. Correlation coefficients between original velocity
signals and scale-velocity.

d−1 d−2 d−3 d−4 d−5

0.0314 0.0365 0.0717 0.1132 0.1390

d−6 d−7 d−8 d−9 s−9

0.1896 0.2113 0.2322 0.3363 0.8075
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Figure 2. Scale velocities obtainded at n=9 for homoge-
neous turbulent velocity atReλ = 720.
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Figure 3. Comparison of original velocity and the largest
scale velocity components−9.

nents and their coordinates. The vorticity contour of scale-
velocity is shown in Figure 6. Clearly, both the vorticity of
scale-velocity and the scale of vortex tend to increase from
scale velocitiesd−1 to d−5. s−5 is the largest scale-velocity
containing the largest scale eddy.

The vorticities of scale velocity have been added to-
gether and is compared with that of the original data as
shown in Figure 7. The difference between them is also
shown in 8. It can be seen that the vorticities of original
velocity are same as that of the scale velocity and the dif-
ferences can be ignored due to their little magnitudes. It
shows that the vorticity also can be reconstituted. The fluc-
tuation velocity signals are decomposed into several scale
velocities, and the vortex has been separated into series of
smaller scale vortex and a bigger scale vortex. Moreover,
the corresponding vorticity can be decomposed.

Turbulent Channel Flow
Nine series of the velocity are obtained at nine diffe-

rent wall distances in a DNS of a turbulent channel flow
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Figure 4. Fourier spectrum ofd− j ( j = 1· · ·9). The refer-
ence line has slop−5/3.
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Figure 5. Fourier spectrum of the sum ofd− j from d−1 to
d−9, s−9. It shows a clear asymptotic behavior.

Figure 6. Vorticity contour of scale-velocity component.

at Reτ = 206. The fluctuation velocity signals (mean ve-
locity subtracted) are decomposed into 11 levels. To know
the relationship between the largest scale velocitiess−11 at
different wall distances, they are compared in Figure 9. It
can be clearly seen that they have similarity in the buffer
and logarithmic regions and that there are time delays from
bottom to channel centre. The correlation coefficients of
s−11 and original velocity signals aty+ = 97.96 to those
at other wall distances are shown in Figure 10. It is obvi-
ous that the correlation coefficients ofs−11 are much larger
than those of original velocity signals. In the consideration
of all these large scale velocities are related to a large co-
herent structure across the half channel, the max correlation
coefficients are also computed and presented. All the cor-
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vorticity: -2.5292 -0.3757 -0.0912 -0.0001 0.0388 0.1226 0.2601 3.1517 6.9389

sum (vorticity of d -j,vorticity of s -n)

vorticity of original velocity

Figure 7. Sum of vorticity of scale velocity and difference
from original velocity .

Figure 8. Difference between voticity of original velocity
and sum of vorticity of scale velocity.

Figure 9. Comparison ofs−11 at different wall distances,
each one is shifted 0.2 upwards fromy+ = 4.12 for clarity.

relation coefficients increase, except for that aty+ = 97.96
as shown in Figure 10. The analysis above is consisten-
t with the experimental results of Marusic (MATHISet al.
(2009)) at high Reynolds number that the large scales in the
logarithmic region have modulation effect on the near wall
motion.

Four series of instantaneous streamwise velocities in x-
z plane are obtained at four different wall distances. The ve-
locity signals are decomposed into 5 levels. From the con-
tour of scale-velocity as shown in Figure 11, Figure 12 and
Figure 13, the streak of high and low velocities can be clear-
ly seen. In buffer layer, the streak of high and low velocity
appears in smaller scale velocity liked−3, but the velocities
in logarithmic region do not have clear steak. In logarithmic
region, the scale-velocityd−4 tend to be streak, yet unclear-
ly, and the scale-velocitys−5 shows the clear streak.It can
be clearly seen that the contour of smaller scale velocity
like d−3 is similar in the same region while less similar in
the different layer. However, the contour of larger scale-

Figure 10. Correlation coefficients ofs−11 and original
velocity signals between aty+ = 97.96 and at othery+.

Figure 11. Velocity contour ofd−3 at different wall dis-
tances.

Figure 12. Velocity contour ofd−4 at different wall dis-
tances.

velocity like s−5 is similar not only in same region but also
in different layers.

High Frequency Detail Prediction
For homogeneous turbulence the finer details can be

predicted from its neighbour coarse levels. The details at
levels -1, -4 and -6 are reconstructed and their power spe-
ctra are compared with the original decomposed scale ve-
locities, as shown in Figure 14. There are small discrepan-
cies between the predicted and original ones, especially at
energy containing frequency.

The original signal can also be extended to finer one
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Figure 13. Velocity contour ofs−5 at different wall dis-
tances.

10 100 1000 10000
1E-20

1E-18

1E-16

1E-14

1E-12

1E-10

1E-8

1E-6

1E-4

0.01

1

100

P
ow

er
 A

s 
M

S
A

 (w
)

Frequency (Hz)

Figure 14. Comparisions of Fourier spectrum of recon-
structed and original scale velocity. From bottom to top,
dp
−1, dp

−4, dp
−6.
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Figure 15. Comparison of Fourier spectrum forλ p
1 (blue)

andλ0(red).

using this model without data contamination as shown in
Figure 15 and Figure 16.

CONCLUSION
A scale decomposition method based on the second

generation wavelets method using lifting scheme is con-
structed for a homogeneous and wall bounded turbulent ve-
locity signals. The turbulent velocity signals are decom-
posed into series of scale-related velocities which have nar-
row bandwidth. From the power spectra analysis of the
scale velocity, it is found that each scale velocity component
contributes to the total spectra at its corresponding frequen-
cy range. From the vorticity analysis of the scale velocity,

it is found that the velocity signals can be decomposed into

Figure 16. Comparison ofλ p
1 (blue) andλ0 (yellow).

several scale velocities, and the vortex has been separated
into a series of smaller scale vortex and a bigger scale vor-
tex. From the correlations of velocities with the same scale
level at different wall distances, it is found that the scale
velocities have large correlation coefficients at the largest
scale.

A reconstruction model promoted under the similarity
assumption can be used to rebuild fine scale-velocity for
homogeneous turbulence by using its neighbour larger scale
velocities. The reconstructed scale velocities have correct
energy spectra compared with that of experimental ones and
have no data contamination. This reconstruction model has
the potential to be applied to build subgrid scale model in
the framework of Large-Eddy Simulation (LES) method by
using resolved velocity filed.
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